EP1339790A1 - Gepfropfte kammpolymere auf basis von acryloyldimethyltaurinsäure - Google Patents

Gepfropfte kammpolymere auf basis von acryloyldimethyltaurinsäure

Info

Publication number
EP1339790A1
EP1339790A1 EP01989523A EP01989523A EP1339790A1 EP 1339790 A1 EP1339790 A1 EP 1339790A1 EP 01989523 A EP01989523 A EP 01989523A EP 01989523 A EP01989523 A EP 01989523A EP 1339790 A1 EP1339790 A1 EP 1339790A1
Authority
EP
European Patent Office
Prior art keywords
acid
mol
copolymers
vinyl
copolymers according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01989523A
Other languages
German (de)
English (en)
French (fr)
Inventor
Roman MORSCHHÄUSER
Matthias LÖFFLER
Ilka Maier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant Produkte Deutschland GmbH
Original Assignee
Clariant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant GmbH filed Critical Clariant GmbH
Publication of EP1339790A1 publication Critical patent/EP1339790A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F291/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8158Homopolymers or copolymers of amides or imides, e.g. (meth) acrylamide; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/817Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions or derivatives of such polymers, e.g. vinylimidazol, vinylcaprolactame, allylamines (Polyquaternium 6)
    • A61K8/8182Copolymers of vinyl-pyrrolidones. Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/86Polyethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F271/00Macromolecular compounds obtained by polymerising monomers on to polymers of nitrogen-containing monomers as defined in group C08F26/00
    • C08F271/02Macromolecular compounds obtained by polymerising monomers on to polymers of nitrogen-containing monomers as defined in group C08F26/00 on to polymers of monomers containing heterocyclic nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/54Polymers characterized by specific structures/properties

Definitions

  • the present invention relates to grafted comb polymers based on acryloyldimethyltauric acid or acryloyldimethyltaurates.
  • thickeners based on acryloyldimethyltauric acid (AMPS) or their salts were introduced onto the market (EP 816 403 and WO 98/00094). Both as homo- and in the form of the copolymers ( ® Aristoflex AVC, Clariant GmbH), such thickeners are superior to the corresponding polycarboxylates (carbopoles) in many respects.
  • thickener systems based on AMPS show excellent properties in pH ranges below pH 6, i.e. in a pH range in which can no longer be used with conventional polycarboxylate thickeners.
  • the easy processability and the favorable toxicological profile of the main monomer give these thickeners a high application potential.
  • the microgel structure of such thickeners leads to a particularly pleasant feeling on the skin.
  • a disadvantage of thickeners based on acryloyldimethyltauric acid is the frequently occurring opalescence of their dilute, aqueous gels.
  • the reason for the opalescence is the strong scattering of visible light in over-crosslinked polymer components, which arise during the polymerization and are not sufficiently swollen in water.
  • grafted comb polymers based on acryloyldimethyltauric acid which can be obtained by polymerizing in the presence of a polymeric additive, have very good thickening and emulsifying / dispersing properties and also have a clear appearance.
  • the invention relates to water-soluble or water-swellable copolymers, obtainable by radical copolymerization of
  • the copolymers according to the invention preferably have a molecular weight of 10 3 g / mol to 10 9 g / mol, particularly preferably 10 4 to 10 7 g / mol, particularly preferably 5 * 10 4 to 5 * 10 6 g / mol.
  • the Acryloyldimethyltauraten can be the inorganic or organic salts of Acryloyldimethyltaurinklare.
  • the Li + , Na + , K + , Mg ++ , Ca ++ , Al +++ and / or NH 4 + salts are preferred.
  • the monoalkylammonium, dialkylammonium, trialkylammonium and / or tetraalkylammonium salts are likewise preferred, it being possible for the alkyl substituents of the amines, independently of one another, to be (dC 22 ) alkyl radicals or (C 2 -C 1 0 ) hydroxyalkyl radicals.
  • one to three times ethoxylated ammonium compounds with different degrees of ethoxylation are preferred. It should be noted that mixtures of two or more of the above representatives are also within the meaning of the invention.
  • the degree of neutralization of acryloyldimethyltauric acid can be between 0 and 100%, a degree of neutralization of above 80% is particularly preferred.
  • the content of acryloyldimethyltauric acid or acryloyldimethyltaurates is at least 0.1% by weight, preferably 20 to 99.5% by weight, particularly preferably 50 to 98% by weight.
  • All olefinically unsaturated monomers can be used as comonomers B), the reaction parameters of which allow a copolymerization with acryloyldimethyltauric acid and / or acryloyldimethyltaurates in the respective reaction media.
  • Preferred comonomers B) are unsaturated carboxylic acids and their anhydrides and salts, and also their esters with aliphatic, olefinic, cycloaliphatic, arylaliphatic or aromatic alcohols with a carbon number of 1 to 22.
  • Particularly preferred unsaturated carboxylic acids are acrylic acid, methacrylic acid, styrene sulfonic acid, maleic acid, fumaric acid, crotonic acid, itaconic acid and senecioic acid.
  • Preferred counterions are Li ⁇ Na ⁇ K ⁇ Mg ++ , Ca ++ , Al +++ , NH 4 + , monoalkylammonium, dialkylammonium, trialkylammonium and / or tetraalkylammonium radicals, where the alkyl substituents are the amines can independently of one another be (C 1 -C 22 ) alkyl radicals or (C 2 -C ⁇ o) hydroxyalkyl radicals.
  • one to three times ethoxylated ammonium compounds with different degrees of ethoxylation can also be used.
  • the degree of neutralization of the carboxylic acids can be between 0 and 100%.
  • Open-chain N-vinylamides are also preferred as comonomers
  • N-vinylformamide (VIFA), N-vinylmethylformamide, N-vinylmethylacetamide (VIMA) and N-vinylacetamide; cyclic N-vinylamides (N-vinyllactams) with a ring size of 3 to 9, preferably N-vinylpyrrolidone (NVP) and N-vinylcaprolactam;
  • Amides of acrylic and methacrylic acid preferably acrylamide, methacrylamide,
  • comonomers B are inorganic acids and their
  • Salts and esters Preferred acids are vinylphosphonic acid, vinylsulfonic acid,
  • the proportion by weight of comonomers B), based on the total mass of the copolymers, can be 0 to 99.7% by weight and is preferably 0.5 to 80% by weight, particularly preferably 2 to 50% by weight.
  • Macromonomer C used.
  • the macromonomers are at least simple olefinically functionalized polymers with one or more discrete repeat units and a number average molecular weight greater than or equal to 200 g / mol. Mixtures of chemically different macromonomers C) can also be used in the copolymerization.
  • the macromonomers are polymeric structures which are composed of one or more repeating unit (s) and have a molecular weight distribution which is characteristic of polymers.
  • Preferred macromonomers C) are compounds of the formula (I).
  • R 1 represents a polymerizable function from the group of vinylically unsaturated compounds which are suitable for building polymer structures by radical means.
  • a suitable bridging group Y is required to bind the polymer chain to the reactive end group.
  • Preferred bridges Y are -O-, -C (O) -, -C (O) -O-, -S-, -O-CH 2 -CH (O -) - CH 2 OH, -O-CH 2 - CH (OH) -CH 2 O-, -O-SO 2 -O-, -O-SO 2 -O-, -O-SO-O-, -PH-, -P (CH 3 ) -, -PO 3 -, -NH- and -N (CH 3 ) -, particularly preferably -O-.
  • the polymer middle part of the macromonomer is represented by the discrete repeat units A, B, C and D.
  • Preferred repeating units A, B, C and D are derived from acrylamide, methacrylamide, ethylene oxide, propylene oxide, AMPS, acrylic acid, methacrylic acid, methyl methacrylate, acrylonitrile, maleic acid, vinyl acetate, styrene, 1, 3-butadiene, isoprene, isobutene, diethylacrylamide and diisopropylacrylamide , especially ethylene oxide and propylene oxide.
  • the indices v, w, x and z in formula (I) represent the stoichiometric
  • v, w, x and z independently of one another are 0 to 500, preferably 1 to 30, the sum of the four coefficients on average having to be ⁇ 1.
  • the distribution of the repeating units over the macromonomer chain can be statistical, block-like, alternating or gradient-like.
  • R 2 denotes a linear or branched aliphatic, olefinic, cycloaliphatic, arylaliphatic or aromatic (-C-C 5 o) hydrocarbon residue, OH, -NH 2 , -N (CH 3 ) 2 or is the same as the structural unit [-YR 1 ].
  • Particularly preferred macromonomers C) are acrylic or methacrylic monofunctionalized alkyl ethoxylates of the formula (II).
  • R 4, R 5 and R5 independently of one another are hydrogen or n-aliphatic, iso-aliphatic, olefinic, cycloaliphatic, arylaliphatic or aromatic (CrC 3 o) hydrocarbon radicals.
  • R 3 and R 4 are preferably H or —CH 3 , particularly preferably H; R is H or -CH 3 ; and R ⁇ is equivalent to an n-aliphatic, iso-aliphatic, olefinic, cycloaliphatic, arylaliphatic or aromatic (C 1 -C 30 ) hydrocarbon radical.
  • v and w are in turn the stoichiometric coefficients relating to the ethylene oxide units (EO) and propylene oxide units (PO), v and w are independently 0 to 500, preferably 1 to 30, the sum of v and w having to be ⁇ 1 on average.
  • the distribution of the EO and PO units over the macromonomer chain can be statistical, block-like, alternating or gradient-like.
  • Y stands for the bridges mentioned above.
  • Particularly preferred macromonomers C) have the following structure according to formula (II):
  • the molecular weight of the macromonomers C) is preferably 200 g / mol to 10 6 g / mol, particularly preferably 150 to 10 4 g / mol and particularly preferably 200 to 5000 g / mol.
  • the proportion by weight of the macromonomer C), based on the total mass of the copolymers, can be 0.1 to 99.8% by weight, particularly preferably 2 to 90% by weight, particularly preferably 5 to 80% by weight.
  • the copolymerization is carried out in the presence of at least one polymeric additive D), the additive D) being completely or completely removed from the polymerization medium before the actual copolymerization is added partially dissolved.
  • the use of several additives D) is also according to the invention.
  • Crosslinked additives D) can also be used.
  • the additives D) or their mixtures need only be wholly or partly soluble in the chosen polymerization medium.
  • additive D has several functions. On the one hand, it prevents the formation of over-crosslinked polymer fractions in the copolymer being formed in the actual polymerization step and, on the other hand, additive D) is statistically attacked by active radicals in accordance with the generally known mechanism of graft copolymerization. This leads to the fact that, depending on additive D), more or less large proportions thereof are incorporated into the copolymers.
  • suitable additives D) have the property of changing the solution parameters of the copolymers formed during the radical polymerization reaction in such a way that the average molecular weights are shifted to higher values. Compared with analog copolymers which were produced without the addition of additives D), those which were prepared with the addition of additives D) advantageously show a significantly higher viscosity in aqueous solution.
  • Preferred additives D) are water and / or alcohol-soluble homopolymers and copolymers. Copolymers are also to be understood as meaning those with more than two different types of monomers.
  • Particularly preferred additives D) are homopolymers and copolymers of N-vinylformamide, N-vinyl acetamide, N-vinyl pyrrolidone, ethylene oxide, propylene oxide, acryloyldimethyltauric acid, N-vinyl caprolactam, N-vinyl methylacetamide, acrylamide, acrylic acid, methacrylic acid, N-vinyl morpholide, hydroxyethyl methacrylate, Diallyldimethylammonium chloride (DADMAC) and / or [2- (methacryloyloxy) ethyl] trimethylammonium chloride (MAPTAC); Polyalkylene glycols and / or alkyl polyglycols.
  • Particularly preferred additives D) are polyvinylpyrrolidones (eg K15 ®, K20 and K30 * ® from BASF), poly (N-vinylformamides), poly (N-vinylcaprolactams) and Copolymers of N-vinylpyrrolidone, N-vinylformamide and / or acrylic acid, which can also be partially or completely saponified.
  • polyvinylpyrrolidones eg K15 ®, K20 and K30 * ® from BASF
  • poly (N-vinylformamides) poly (N-vinylcaprolactams)
  • Copolymers of N-vinylpyrrolidone, N-vinylformamide and / or acrylic acid which can also be partially or completely saponified.
  • the molecular weight of the additives D) is preferably 10 2 to 10 7 g / mol, particularly preferably 0.5 * 10 4 to 10 6 g / mol.
  • the content of polymeric additives D), based on the total mass of the copolymers, is 0.1 to 99.8% by weight, preferably 0.1 to 90% by weight, particularly preferably 1 to 20% by weight, in particular preferably 1.5 to 10% by weight.
  • the copolymers according to the invention are crosslinked, i.e. they contain comonomers with at least two polymerizable vinyl groups.
  • Preferred crosslinkers are methylene bisacrylamide; methylenebismethacrylamide; Esters of unsaturated monocarboxylic and polycarboxylic acids with polyols, preferably diacrylates and triacrylates or methacrylates, particularly preferably butanediol and ethylene glycol diacrylate or methacrylate, trimethylolpropane triacrylate (TMPTA) and allyl compounds, preferably allyl (meth) acrylate, triallylcyanuryl ester, maleic acid allyl allyl anilide, maleic acid allyl allyl allyl allyl allyl allyl allyl, , Triallylamine, tetraallylethylenediamine; Allyl esters of phosphoric acid; and / or vinylphosphonic acid derivatives.
  • TMPTA trimethylolpropane triacrylate
  • allyl compounds preferably allyl (meth) acrylate, triallylcyanuryl ester, maleic acid ally
  • TMPTA Trimethylolpropane triacrylate
  • the proportion by weight of crosslinking comonomers, based on the total mass of the copolymers, is preferably up to 20% by weight, particularly preferably 0.05 to 10% by weight and particularly preferably 0.1 to 7% by weight.
  • All organic or inorganic solvents can be used as the polymerization medium which are largely inert with respect to radical polymerization reactions and which advantageously permit the formation of medium or high molecular weights.
  • Water is preferred; lower alcohols; preferably methanol, ethanol, propanols, iso-, sec- and t- Butanol, particularly preferably t-butanol; Hydrocarbons with 1 to 30 carbon atoms and mixtures of the aforementioned compounds.
  • the polymerization reaction is preferably carried out in the temperature range between 0 and 150 ° C., particularly preferably between 10 and 100 ° C., both under normal pressure and under elevated or reduced pressure. If necessary, the polymerization can also be carried out under a protective gas atmosphere, preferably under nitrogen.
  • High-energy electromagnetic radiation, mechanical energy or the usual chemical polymerization initiators such as organic peroxides, for example benzoyl peroxide, tert-butyl hydroperoxide, methyl ethyl ketone peroxide, cumene hydroperoxide, dilauroyl peroxide (DLP) or azo initiators, such as, for example, azodiisobutyronitrile (AIBN), can be used to trigger the polymerization.
  • organic peroxides for example benzoyl peroxide, tert-butyl hydroperoxide, methyl ethyl ketone peroxide, cumene hydroperoxide, dilauroyl peroxide (DLP) or azo initiators, such as, for example, azodiisobutyronitrile (AIBN)
  • AIBN azodiisobutyronitrile
  • inorganic peroxy compounds such as (NH 4 ) 2 S 2 O 8 , K 2 S 2 O ⁇ or H 2 O 2 , optionally in combination with reducing agents (for example sodium bisulfite, ascorbic acid, iron (II) sulfate etc.) or Redox systems which contain an aliphatic or aromatic sulfonic acid (eg benzenesulfonic acid, toluenesulfonic acid etc.) as reducing component.
  • reducing agents for example sodium bisulfite, ascorbic acid, iron (II) sulfate etc.
  • Redox systems which contain an aliphatic or aromatic sulfonic acid (eg benzenesulfonic acid, toluenesulfonic acid etc.) as reducing component.
  • the polymerization reaction can e.g. performed as precipitation polymerization, emulsion polymerization, bulk polymerization, solution polymerization or gel polymerization.
  • Precipitation polymerization, preferably in tert-butanol, is particularly advantageous for the property profile of the copolymers according to the invention.
  • the multifunctional copolymers according to the invention have a great variety of structures and consequently a wide range of potential uses which can be tailored to almost any question in which interface or surface effects play a role. In particular, should also on the
  • the polymer was produced by the precipitation process in tert. Butanol.
  • the monomers were initially introduced into t-butanol, and the reaction mixture was then initiated after heating to 60 ° C. by adding DLP.
  • the polymer was isolated by suction extraction of the solvent and subsequent vacuum drying.
  • the polymer In 1% solution in distilled water, the polymer had a clear appearance with a viscosity of 45,000 mPas. In comparison, the unmodified gel with the same composition - only the polymer additive is missing - shows a significantly more opalescent appearance and a viscosity of 40,000 mPas under the same measurement conditions.
  • the polymer was made in water by the gel polymerization process.
  • the monomers were dissolved in water, the reaction mixture was rendered inert, and the reaction was then initiated after heating to 65 ° C. by adding sodium peroxodisulfate.
  • the polymer gel was then crushed and the polymer isolated using vacuum drying.
  • the polymer was made in water by the emulsion process.
  • the monomers were emulsified in a water / cyclohexane using ® Span 80, then the reaction mixture was rendered inert using N 2 and the reaction was then started after heating to 80 ° C. by adding sodium peroxodisulfate.
  • the polymer emulsion was then evaporated (cyclohexane acts as a tug for water) and the polymer isolated.
  • the polymer was tert in the precipitation process. Butanol made. The monomers were initially introduced in t-butanol, the reaction mixture was rendered inert, and the reaction was then initiated after heating to 60 ° C. by adding AIBN. The polymer was isolated by suction extraction of the solvent and subsequent vacuum drying.
  • the polymer In 1% solution in distilled water, the polymer had a clear appearance with a viscosity of 65,000 mPas. In comparison, the unmodified gel with the same composition - only the polymer additive is missing - showed a significantly more opalescent appearance and a viscosity of 50,000 mPas under the same measurement conditions.
  • the polymer was made by the solution method in water. The monomers were dissolved in water, the reaction mixture was rendered inert, and the reaction was then initiated by heating to 55 ° C. using an iron (II) sulfate / H 2 O 2 redox couple. The polymer solution was then evaporated and the polymer isolated by vacuum drying.
  • the polymer was tert in the precipitation process. Butanol made. The monomers were initially introduced into t-butanol, the reaction mixture was rendered inert, and the reaction was then initiated after heating to 60 ° C. by adding DLP. The polymer was isolated by suction extraction of the solvent and subsequent vacuum drying.
  • the polymer was tert in the solution process. Butanol made. The monomers were initially introduced into t-butanol, the reaction mixture was rendered inert, and the reaction was then initiated after heating to 70 ° C. by adding DLP. The polymer was isolated by evaporation of the solvent and subsequent vacuum drying.
  • the polymer was made in an isopropanol / water mixture by the solution method.
  • the monomers were initially charged in isopropanol / water, the reaction mixture was rendered inert, and the reaction was then initiated after heating to 55 ° C. by adding potassium peroxodisulfate.
  • the polymer was isolated by evaporation of the solvent mixture and subsequent vacuum drying.
  • the ® Genapol types are products from Clariant GmbH.
EP01989523A 2000-12-01 2001-11-28 Gepfropfte kammpolymere auf basis von acryloyldimethyltaurinsäure Withdrawn EP1339790A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10059829A DE10059829A1 (de) 2000-12-01 2000-12-01 Gepfropfte Kammpolymere auf Basis von Acryloyldimethyltaurinsäure
DE10059829 2000-12-01
PCT/EP2001/013855 WO2002044268A1 (de) 2000-12-01 2001-11-28 Gepfropfte kammpolymere auf basis von acryloyldimethyltaurinsäure

Publications (1)

Publication Number Publication Date
EP1339790A1 true EP1339790A1 (de) 2003-09-03

Family

ID=7665482

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01989523A Withdrawn EP1339790A1 (de) 2000-12-01 2001-11-28 Gepfropfte kammpolymere auf basis von acryloyldimethyltaurinsäure

Country Status (6)

Country Link
US (1) US6964995B2 (es)
EP (1) EP1339790A1 (es)
JP (1) JP2002201238A (es)
BR (1) BR0115839A (es)
DE (1) DE10059829A1 (es)
WO (1) WO2002044268A1 (es)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10059819A1 (de) * 2000-12-01 2002-06-13 Clariant Gmbh Tensidhaltige kosmetische, dermatologische und pharmazeutische Mittel
DE10059822A1 (de) * 2000-12-01 2002-06-13 Clariant Gmbh Saure kosmetische, pharmazeutische und dermatologische Mittel
DE10243661A1 (de) * 2002-09-19 2004-04-01 Clariant Gmbh Flüssige Wasch-und Reinigungsmittel mit Konsistenz-gebenden Polymeren
MXPA03008714A (es) 2002-09-26 2004-09-10 Oreal Polimeros secuenciados y composiciones cosmeticas que comprenden tales polimeros.
WO2004028485A2 (fr) 2002-09-26 2004-04-08 L'oreal Composition brillante et non transfert comprenant un polymere sequence
US20060229209A1 (en) * 2002-12-02 2006-10-12 Lysander Chrisstoffels Copolymers based on n-vinylamide as adjuvants and agents for using in the agrotechnical field
DE10257279A1 (de) 2002-12-07 2004-06-24 Clariant Gmbh Flüssige Bleichmittelkomponenten enthaltend amphiphile Polymere
FR2860143B1 (fr) 2003-09-26 2008-06-27 Oreal Composition cosmetique comprenant un polymere sequence et une huile siliconee non volatile
US8728451B2 (en) 2004-03-25 2014-05-20 L'oreal Styling composition comprising, in a predominantly aqueous medium, a pseudo-block polymer, processes employing same and uses thereof
US20060018863A1 (en) 2004-07-13 2006-01-26 Nathalie Mougin Novel ethylenic copolymers, compositions and methods of the same
FR2902999B1 (fr) 2006-07-03 2012-09-28 Oreal Utilisation de derives c-glycoside a titre d'actif prodesquamant
FR2904320B1 (fr) 2006-07-27 2008-09-05 Oreal Polymeres sequences, et leur procede de preparation
DE102008008179A1 (de) * 2008-02-08 2009-08-13 Clariant International Ltd. Verfahren zur Herstellung von Polymeren durch lonenaustausch
US7989401B2 (en) * 2008-04-21 2011-08-02 Nalco Company Block copolymers for recovering hydrocarbon fluids from a subterranean reservoir
DE102008046075A1 (de) * 2008-09-08 2010-03-11 Evonik Röhm Gmbh (Meth)acrylatmonomer, Polymer sowie Beschichtungsmittel
FR2940907B1 (fr) 2009-01-15 2011-03-04 Oreal Composition cosmetique ou dermatologique, comprenant un retinoide, un compose non phosphate a base d'adenosine et un polymere semi-cristallin
DE102009020299A1 (de) 2009-05-07 2010-11-11 Clariant International Ltd. Kammpolymere und deren Verwendung in Wasch- und Reinigungsmitteln
EP2512417A2 (fr) 2009-12-18 2012-10-24 L'Oréal Procede de traitement cosmetique impliquant un compose apte a condenser in situ et un agent filtrant les radiations uv
FR3001136B1 (fr) 2013-01-21 2015-06-19 Oreal Emulsion cosmetique ou dermatologique comprenant une merocyanine et un systeme emulsionnant contenant un polymere amphiphile comportant au moins un motif acide acrylamido 2-methylpropane sulfonique
FR3007645A1 (fr) 2013-06-27 2015-01-02 Oreal Gel emulsionne amidon pemulen
ES2661646T3 (es) 2013-07-19 2018-04-02 L'oreal Composición de tinte que comprende un tensioactivo anfótero particular y un tensioactivo de amida oxietilenada o un tensioactivo de alcohol graso oxietilenado que comprende menos de 10 unidades de OE y mezcla de los mismos
US10071038B2 (en) 2013-07-19 2018-09-11 L'oreal Dye composition comprising a particular amphoteric surfactant and a particular thickening polymer
FR3008614B1 (fr) 2013-07-19 2015-07-31 Oreal Composition de coloration comprenant un tensio actif amphotere particulier et un tensioactif sulfate
EP3310735B1 (de) 2015-06-17 2019-02-06 Clariant International Ltd Verfahren zur herstellung von polymeren auf basis von acryloyldimethyltaurat und neutralen monomeren
CN108235706B (zh) 2015-06-17 2020-11-20 科莱恩国际有限公司 基于丙烯酰基二甲基牛磺酸酯、中性单体和具有羧酸根基团的单体的聚合物的制备方法
EP3106147B1 (de) 2015-06-17 2019-09-04 Clariant International Ltd Verfahren zur herstellung von polymeren auf basis von acryloyldimethyltaurat, neutralen monomeren, monomeren mit cabonsäuren und speziellen vernetzern
EP3106470A1 (de) 2015-06-17 2016-12-21 Clariant International Ltd Verfahren zur herstellung von polymeren auf basis von acryloyldimethyltaurat und speziellen vernetzern
EP3106471A1 (de) 2015-06-17 2016-12-21 Clariant International Ltd Verfahren zur herstellung von polymeren auf basis von acryloyldimethyltaurat, neutralen monomeren und speziellen vernetzern
FR3058050B1 (fr) 2016-10-28 2019-01-25 L'oreal Composition comprenant au moins deux esters d’acide gras et de (poly)glycerol, et son utilisation en cosmetique
BR112019010229B1 (pt) 2017-04-28 2022-05-03 L'oreal Método para modelar os cabelos e uso de uma composição para cuidados com os cabelos em gel-creme
FR3128118A1 (fr) 2021-10-14 2023-04-21 L'oreal ProceDE de traitement des cheveux comprenant l’application d’une émulsion huile-dans-eau comprenant une phase aqueuse, une phase grasse et un polymère

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3765885A (en) * 1972-01-03 1973-10-16 Polaroid Corp Neutralizing layer for color diffusion transfer film
US4859458A (en) * 1981-09-15 1989-08-22 Morton Thiokol, Inc. Hair conditioning polymers containing alkoxylated nitrogen salts of sulfonic acid
US4521578A (en) * 1983-09-26 1985-06-04 Dresser Industries, Inc. Composition and method of preparation of novel aqueous drilling fluid additives
GB8820332D0 (en) * 1988-08-26 1988-09-28 Allied Colloids Ltd Graft copolymers
JP3054447B2 (ja) * 1990-01-05 2000-06-19 三菱製紙株式会社 水溶性ポリマー微粒子の製造方法
JPH0489875A (ja) * 1990-08-03 1992-03-24 Mitsubishi Paper Mills Ltd 親水性耐水化塗工液
GB9104878D0 (en) 1991-03-08 1991-04-24 Scott Bader Co Thickeners for personal care products
JPH04296372A (ja) * 1991-03-27 1992-10-20 Mitsubishi Rayon Co Ltd 合成樹脂成形品用被覆剤組成物
NZ243274A (en) * 1991-06-28 1994-12-22 Calgon Corp Hair care compositions containing ampholytic terpolymers
FR2698004B1 (fr) * 1992-11-13 1995-01-20 Oreal Dispersion aqueuse cosmétique ou dermatologique pour le traitement des cheveux ou de la peau, à base d'esters d'acide gras de sucre ou d'alkylsucre et de copolymères réticulés d'acrylamide.
US6001379A (en) 1993-09-15 1999-12-14 L'oreal Stable acidic oil-in- water type emulsions and compositions containing them
FR2709982B1 (fr) 1993-09-15 1995-12-08 Oreal Emulsions acides stables de type huile-dans-eau et compositions les contenant.
DE19646484C2 (de) * 1995-11-21 2000-10-19 Stockhausen Chem Fab Gmbh Flüssigkeitsabsorbierende Polymere, Verfahren zu deren Herstellung und deren Verwendung
US5688614A (en) * 1996-05-02 1997-11-18 Motorola, Inc. Electrochemical cell having a polymer electrolyte
FR2750325B1 (fr) 1996-06-28 1998-07-31 Oreal Utilisation en cosmetique d'un poly(acide 2-acrylamido 2- methylpropane sulfonique) reticule et neutralise a au moins 90 % et compositions topiques les contenant
DE19625810A1 (de) 1996-06-28 1998-01-02 Hoechst Ag Wasserlösliche oder wasserquellbare Polymerisate
FR2750327B1 (fr) * 1996-06-28 1998-08-14 Oreal Composition a usage topique sous forme d'emulsion huile-dans-eau sans tensio-actif contenant un poly(acide 2- acrylamido 2-methylpropane sulfonique) reticule et neutralise
JPH1193092A (ja) * 1997-09-11 1999-04-06 Hymo Corp 紙用表面塗布剤
DE19749731A1 (de) * 1997-11-11 1999-05-12 Basf Ag Verwendung von Mikrokapseln als Latentwärmespeicher
JP2000007734A (ja) * 1998-06-23 2000-01-11 Jsr Corp 水溶性共重合体(塩)およびスケール防止剤
DE19907587A1 (de) 1999-02-22 2000-08-24 Basf Ag Haarkosmetische Formulierungen
DE19926355A1 (de) * 1999-06-10 2000-12-14 Clariant Gmbh Wasserlösliche Mischpolymere und ihre Verwendung für Exploration und Förderung von Erdöl und Erdgas
EP1069142B1 (de) * 1999-07-15 2010-04-28 Clariant Produkte (Deutschland) GmbH Wasserlösliche Polymere und ihre Verwendung in kosmetischen und pharmazeutischen Mitteln
DE10059828A1 (de) * 2000-12-01 2002-06-13 Clariant Gmbh Kammförmige Copolymere auf Basis von Acryloyldimethyltaurinsäure
DE10059822A1 (de) * 2000-12-01 2002-06-13 Clariant Gmbh Saure kosmetische, pharmazeutische und dermatologische Mittel
DE10059824A1 (de) * 2000-12-01 2002-06-13 Clariant Gmbh Elektrolythaltige kosmetische, pharmazeutische und dermatologische Mittel
DE10059827A1 (de) * 2000-12-01 2002-06-20 Clariant Gmbh Kosmetische und dermatologische Haarbehandlungsmittel
DE10059830A1 (de) * 2000-12-01 2002-06-13 Clariant Gmbh Kationisch modifizierte Kammpolymere auf Basis von Acryloyldimethyltaurinsäure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0244268A1 *

Also Published As

Publication number Publication date
US20040116628A1 (en) 2004-06-17
WO2002044268A1 (de) 2002-06-06
BR0115839A (pt) 2003-09-16
DE10059829A1 (de) 2002-06-13
JP2002201238A (ja) 2002-07-19
US6964995B2 (en) 2005-11-15

Similar Documents

Publication Publication Date Title
EP1339790A1 (de) Gepfropfte kammpolymere auf basis von acryloyldimethyltaurinsäure
EP1363956B1 (de) Kammförmige copolymere auf basis von acryloyldimethyltaurinsäure (2-acrylamido-2-methyl-1-propansulfonsäure)
EP1339765A1 (de) Kationisch modifizierte kammpolymere auf basis von acryloyldimethyltaurinsäure
EP1339791B1 (de) Gepfropfte copolymere auf basis von acryoyldimethyltaurinsäure
WO2002044230A2 (de) Zusammensetzungen, enthaltend copolymere auf basis von acryloyldimethyltaurinsäure und synergistische additive
EP1339764B1 (de) Siliziummodifizierte kammpolymere auf basis von acryloyldimethyltaurinsäure (2-acrylamido-2-methyl-1-propansulfonsäure)
EP1373343A2 (de) Fluormodifizierte kammpolymere auf basis von acryloyldimethyltaurinsäure (2-acrylamido-2-methyl-1-propansulfonsäure)
DE3925220C1 (es)
EP1339789B1 (de) Elektrolythaltige kosmetische, pharmazeutische und dermatologische mittel
EP1339792B1 (de) Tensidhaltige kosmetische, dermatologische und pharmazeutische mittel
EP1357893A2 (de) Saure kosmetische, pharmazeutische und dermatologische mittel
EP1339383A2 (de) Kosmetische, pharmazeutische und dermatologische mittel
EP1345575A2 (de) Kosmetische und dermatologische haarbehandlungsmittel
EP1347013A2 (de) Stabile Dispersionskonzentrate
EP2705062A1 (de) Neue scherstabile polymersysteme, deren herstellung sowie deren verwendung als verdicker
DE10127876A1 (de) Zusammensetzungen, enthaltend Copolymere auf Basis von Acryloyldimethyltaurinsäure und synergistische Additive
EP1464658B1 (de) Verfahren zur Herstellung von stabilen Polymer-Konzentraten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030701

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20040831

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CLARIANT PRODUKTE (DEUTSCHLAND) GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140904

INTC Intention to grant announced (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20170223

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT