US3645346A - Erosion drilling - Google Patents

Erosion drilling Download PDF

Info

Publication number
US3645346A
US3645346A US32954A US3645346DA US3645346A US 3645346 A US3645346 A US 3645346A US 32954 A US32954 A US 32954A US 3645346D A US3645346D A US 3645346DA US 3645346 A US3645346 A US 3645346A
Authority
US
United States
Prior art keywords
nozzles
bit
nozzle system
drill string
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US32954A
Inventor
James F Miller
William C Maurer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Upstream Research Co
Original Assignee
Exxon Production Research Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Production Research Co filed Critical Exxon Production Research Co
Application granted granted Critical
Publication of US3645346A publication Critical patent/US3645346A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/18Drilling by liquid or gas jets, with or without entrained pellets
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/08Roller bits
    • E21B10/18Roller bits characterised by conduits or nozzles for drilling fluids
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/60Drill bits characterised by conduits or nozzles for drilling fluids
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/10Valve arrangements in drilling-fluid circulation systems
    • E21B21/103Down-hole by-pass valve arrangements, i.e. between the inside of the drill string and the annulus

Definitions

  • ABSTRACT An erosion bit for earth-drilling operations having a first nozzle system open for conducting drilling fluid and a second nozzle system closed by a pressure-sensitive closure means. Means are provided for plugging the first nozzle system and for actuating the pressure-sensitive closure means to open the second nozzle system. Drilling fluid can initially be flowed through the first nozzle system until the nozzles become eroded and then through the second nozzle system.
  • This invention relates to erosion drilling. In one aspect it relates to an improved erosion-drilling method, and in another, to an improved erosion drill bit.
  • Erosion drilling is a technique for drilling boreholes using high velocity hydraulic jets as the principal mechanism for inducing stresses in the formation rock.
  • the basic components of the erosion-drilling system comprise high-pressure pumps, high-pressure drill string, and an erosion bit provided with a plurality of nozzles.
  • the erosion bit can also include auxiliary cutting devices such as cone cutters, drag bit blades or a diamond head.
  • the principal source of energy is derived from the high velocity jets discharging from the nozzles.
  • the nozzles are sized in relation to the available pump pressure to create high velocity jets (in excess of 500 feet per second) and are positioned on the bit to direct the jets impingingly against the formation rock.
  • the high kinetic energy of the jets is thus spent on the rock causing it to shatter into fragments small enough to be carried away from the bit by the fluid stream returning to the surface through the annulus.
  • the number and pattern geometry of the nozzles depend to a large extent upon the available mounting space on the bit body.
  • An erosion bit equipped with drag bit blades or a diamond head provides space for mounting several nozzles in a variety of patterns.
  • the noule pattern generally is such to provide a sweeping jet action as the bit is rotated.
  • Cone cutters mounted on the erosion bit on the other hand, greatly restrict the number and location of the nozzles.
  • the nozzles must be arranged so that the high velocity jets do not impinge against the cones.
  • Erosion drilling has a power output potential many times greater than that attainable with conventional rotary drilling equipment. Notwithstanding the potential of the erosiondrilling concept, it has not received broad application in commercial drilling operations, partly because of the short life span of the bits. At the extreme velocities and pressures required in erosion drilling, the nozzles wash out in a relatively.
  • the purpose of the present invention is to prolong the operable lifespan of an erosion bit.
  • the erosion bit constructed according to the present invention contains at least two sets of nozzle systems, one system being open for conducting drilling fluid and the other set being closed by a pressureactuable closure means.
  • the oil or gas well can be drilled using conventional rotary techniques until such a depth or such a formation is reached that erosion drilling is more economical.
  • erosion drilling because of its high power output is particularly suited to drilling in hard to medium-hard formations.
  • the drill string is withdrawn from the borehole, the conventional bit replaced with an erosion bit, and returned to the bottom of the borehole. Initially, erosion drilling is through the open set of nozzles.
  • the first nozzle system can be closed by pumping a plug or plugs down the drill string.
  • the plug or plugs seat in the bit closing all the nozzles.
  • the pressure in the drill string is increased to the actuation pressure of the closure means, which is substantially above the normal drilling pressure.
  • Actuation of the closure means opens the second nozzle system permitting the drilling to be resumed.
  • a preferred form of the closure means is a rupture disc mounted in the main flow course of the second nozzle system or in the individual nozzles thereof. The rupture disc or discs provide a positive seal, contain no moving parts, and are easily adapted to the erosion bit.
  • three separate nozzle systems can be used, in which case the second and third sets are provided with closure means actuable at substantially different pressures. The drilling operation then will proceed in sequential order using the first system, the second system, and finally the third system.
  • the nozzles tend to fail before any of the other parts, particularly where the auxiliary cutting device is in the form of a diamond head or drag bit blades.
  • the operable lifespan of the bit can be substantially increased.
  • FIG. 1 is an end view of an erosion bit constructed according to the present invention.
  • FIG. 2 is a simplified, longitudinal sectional view of the bit shown in FIG. 1, the cutting plane taken generally along the line 2-2 thereof. abrasive.
  • FIG. 3 is an end view of another embodiment of the present invention.
  • FIG. 4 is a longitudinal sectional view of the bit shown in FIG. 3, the cutting plane taken generally along the line 4-4 thereof.
  • FIG. 5 is an enlarged, sectional view of the burst plate assembly adapted to be mounted in the bit shown in FIGS. 1 and 2
  • FIG. 6 is an enlarged, sectional view of an insert nozzle adapted to be connected to the bit shown in FIGS. 3 and 4.
  • the present invention will be described in connection with an erosion bit provided with drag bit blades (FIGS. 1, 2, and 5) and with an erosion bit provided with cone cutters (FIGS. 3, 4, and 6).
  • the bit contains at least two sets of nozzle systems, closure means for maintaining one system closed, and plugging means for closing the other system. Separate closure means and separate plugging means are disclosed in the two embodiments but it should be understood that either bit can be constructed to accommodate any combination of the closure means and plugging means dis closed.
  • an erosion bit 10 is seen to include a body 11 and a shank 12 threaded for connection to the lower end of a drill string (not shown).
  • the body 11 has formed therein four radial wings 13, 14, 15, and 16 arranged in circumferentially spaced relation.
  • Mounted on the bottom surface of each wing is a drag bit blade blades 17, 18, 19, and 20 being secured, respectively, to wings 13, 14, 15, and 16.
  • the leading edges of each of the blades 17-20 extend in a radial direction from the axis of the body 11 and are disposed to effect a cutting action attendant to counterclockwise rotation of the bit 10 as viewed in FIG. 1.
  • the blades 17-20 can be welded to the body 11 by conventional techniques and provided with hard facing material such as tungsten carbide. Altematively, the cutting blades l7-20 can be integrally formed in the bit body 11 and surfaced with the hard facing material. The outer peripheries of the blades l7-20 and wings 13-16 can be surfaced with diamonds to maintain bit gauge.
  • a central chamber 21 extends through the shank 12 and into the bit body 11 terminating at end wall 22 near the bottom of the bit body 11.
  • the upper end of the shank 12 is internally beveled to provide a tapered inlet into the chamber 21.
  • An upper longitudinal portion 23 of the chamber 21 is full opening having about the same diameter as the inside diameter of the drill string whereas a lower portion 24 is of reduced cross section.
  • Beveled shoulder 25 interconnects the chamber walls defining upper and lower portions 23 and 24.
  • Each of the wings 13-16 are provided with a nozzle system which includes a set of nozzles and a flow course interconnecting the central chamber 21 and the nozzles.
  • the nozzle systems are arranged in paired relation with one system being open for conducting fluid and the other system being provided with closure means to prevent the flow of fluid therethrough.
  • the nozzle system in wing 14 is arranged to cooperate with the nozzle system in wing 16.
  • the paired nozzle systems in wings l4 and 16 are identical to the paired nozzle systems in wings 13 and 15.
  • the flow passages for the nozzle system in wing 14 includes a common header 26 which extends outwardly from lower portion 24 of the central passageway 21, and individual flow courses 27, 28, and 29 which extend downwardly from the common header 26 through the bottom of the bit body 11.
  • the body can be counterbored and the flow course exits threaded to permit attachment of insert nozzles 30, 31, and 32 to the body 11.
  • the nozzle system provided in wing 16 and adapted to cooperate with the nozzle system in wing 14 includes a common header 33 which extends radially outwardly from the upper portion 23 of central chamber 21 through wing 16 exiting at threaded opening 33a.
  • Individual flow courses 34, 35, and 36 extend downwardly from the common header 33 and exit through the bit body 11.
  • the bit body 11 can be counterbored in the area of the discharge ends and the lower extremities of the flow courses 34-36 can be threaded to permit attachment of nozzles 37, 38, and 39 to the bit body 11.
  • the closure means includes a frangible member which is rupturable at a predetermined upstream pressure.
  • the closure means is in the form of a rupture disc assembly 41.
  • the rupture disc assembly 41 includes a steel tube 42, a disc 43, and a bushing 44.
  • the outer periphery of the tube 42 is threaded for connection to the threaded portion 40 of the header 33.
  • One end 45 of the tube 42 is counterbored and provided with internal threads for receiving the bushing 44.
  • the disc 43 is inserted into the counterbored end 45 of the tube 42 positioned to bridge the internal opening thereof.
  • Bushing 44 is screwed into the tube 42 clampingly engaging the flanges of the disc 43.
  • the assembly 41 is then inserted through the opening 33a and screwed into the body 11.
  • a pipe plug 46 is screwed to threaded opening 33a closing the outer end of header 33. O-ring seals, provided on the disc assembly 41 and the plug 46, maintain fluidtight seals for the threaded connections.
  • the nozzle system in wing 13 can be similar to that in wing 14 including internal flow passages (not shown) leading to nozzles 47, 48, and 49 (see FIG. 1).
  • the nozzle system in wing can be similar to that in wing 16 including internal flow passages (not shown), a rupture disc assembly (not shown) and nozzles 50, 51, and 52 (see FIG. 1).
  • the nozzles 30-32, 37-39, and 4752 can be constructed by the method disclosed in U.S. Pat. No. 3,131,779 to D. S. Rowley et al.
  • Each nozzle includes a metal carbide insert mounted in a steel sleeve.
  • the steel sleeve can be threaded for screwing into the threaded flow course exits.
  • a sealing element extending around the outer periphery of the nozzle assembly insures a fluidtight seal at the threaded connection.
  • the nozzles of the paired systems are arranged in diametric alignment.
  • the pairings and nozzle patterns can be according to any geometry permissible within the space limitations of the bit 10.
  • the nozzle dimensions and nozzle pattern of one system can be different from those of its paired system permitting the bit 10 to adapt to different drilling conditions by merely closing one nozzle system and opening the other.
  • the bit 10 as run on the drilling string includes two open nozzle systems (wings 13 and 14) and two closed systems (wings 15 and 16).
  • the open systems communicate with the central chamber 21 below the beveled shoulder 25, whereas the closed systems are adapted to communicate with the central chamber above the shoulder 25.
  • the plug 50 In operation, erosion drilling is initially performed using the nozzle systems of wings 13 and 14 and proceeds until the nozzles 30-32 and 47-49 become eroded as evidenced by reduced drilling rates or pressure. At this time, a plug 50 conflgurated to seat on shoulder 25 is pumped down the drill string and into the chamber 21. As shown in FIG. 1, the plug 50 has a tapered leading end 51, a cylindrical portion 52 provided with an annular sealing member 53, and a beveled flange 54 shaped to mate with shoulder 25. The plug 50 can also be provided with a wire line fishing head 55 to permit running and retrieving by use of wire line equipment.
  • the pressure in chamber 21 upstream of the plug 50 is increased by surface pumping until the rupture pressure of the disc 43 is reached rendering the assembly 41 inoperative as a closure means.
  • the disc 43 is selected to have a rupture pressure substantially higher than the maximum drilling pressure.
  • the rupture disc 43 of appropriate material and thickness is selected to break at about 18,000 p.s.i. Suitable disc materials include aluminum, copper, steel, nickel, Monel, stainless steel, and the like. Any disc debris that becomes lodged in the nozzles will be quickly eroded away by the high velocity jets.
  • an erosion bit 60 includes a body 61 and a shank 62 threaded for connection to the bottom of a drill string (not shown).
  • the bit 60 includes two cone cutters 63 and 64 journaled to the body 61 in the conventional manner.
  • a central chamber 65 extends axially through shank 62 into the bit body 61 terminating at end wall 66.
  • Flow courses 67 and 68 formed in the body 61 extend radially outwardly from the central chamber 65, bend downwardly, and exit through the bottom surface of the bit body 61.
  • Counterbores 69 and 70 surrounding the flow course exits receive extension tubes 71 and 72.
  • the tubes 71 and 72 are welded to the body 61 and are internally machined to provide a smooth continuation of flow courses 67 and 68.
  • the lower ends of tubes 71 and 72 are provided with end walls 73 and 74, respectively, which are located slightly above the lower extremity of the cone cutters 63 and 64. Each of the end walls 73 and 74 are prov ded with side-by-side boreholes threaded for receiving flow,nozzles.
  • the extension tubes have mounted in their end walls 73 and 74 normally open nozzles 75 and 76, respectively, and normally closed nozzles 77 and 78, respectively.
  • the normally open nozzles 75 and 76 can be constructed by the method described in U.S. Pat. No. 3,131,779 to D. S. Rowley et al., each having a mounting sleeve and a hollow cylindrical nozzle secured therein.
  • the internal passages through the nozzles 75 and 76 are provided with tapered inlets 79 and 80, respectively.
  • the normally closed nozzles 77 and 78 are constructed to include closure means for maintaining the flow passages therethrough closed during a portion of the drilling operation.
  • the nozzles 77 and 78 each include a steel or other ferroalloy support sleeve 81 having a threaded section 82 milled in its outer periphery, an internal bore 83, and a hex head 84.
  • O-ring 92 provides a fluidtight seal for threaded connection to the body 61.
  • Secured to the interior surface of the sleeve 81 are an upper insert 85, a rupture disc 86, and a lower insert 87 arranged in stacked relation.
  • the stacked parts 85, 86, and 87 can be inserted as a unit and silver brazed to the sleeve 81 by conventional welding techniques.
  • the inserts 85 and 87 are hollow having aligned internal openings 88 and 89. Opening 88 can be provided with a tapered inlet 90.
  • the inserts 85 and 87 can be composed of abrasive-resistant material such as one of the hard ceramics, the hard metal carbides, particularly tungsten carbide, being preferred.
  • the disc 86 can be composed of aluminum, copper, steel, nickel, Monel, stainless steel, and the like. The discs 86 are precision made and have a bursting pressure within about 5 percent of a specified pressure.
  • the drilling fluid flows through two passages: one comprising course 67, tube 71 and nozzle 75 and the other comprising course 68, tube 72, and nozzle 76.
  • Drilling continues through these passages until the drilling rate or pressure has reduced sufficiently to indicate erosion of the nozzles 75 and 76.
  • Sealing balls 91 composed of tough, resilient material such as teflon or nylon or other plastic material can then be pumped down the drill string through the flow courses until the balls seat in nozzle inlets 79 and 80. The balls 91 will follow the stream of flow and be carried to the open nozzles 75 and 76 and nest in the nozzle inlet.
  • the application of pressure causes the balls to deform to the contour of the inlets 79 and 80 much in the manner illustrated in FIG. 4.
  • the resulting pressure-seal can withstand pressures as high as 20,000 p.s.i.
  • two balls 91 can be dropped at sufficient time intervals to insure that both balls do not enter the same flow course.
  • pressuring up of the drill string causes the discs 86 to rupture at predetermined levels, opening the second set of nozzles 77 and 78. Drilling then can be resumed through these nozzles.
  • the high velocity jets rapidly erode away the disc fragments remaining in the nozzle openings.
  • the maximum nozzle pressure will be in the order of 15,000 p.s.i.
  • the rupture discs 86 should be sized to rupture at pressures in the order of 18,000 to 20,000 p.s.i.
  • the pump pressure should be increased to at least a few hundred p.s.i. above the designated burst pressure to insure that both discs are broken.
  • the nozzles 77 and 78 containing the rupture discs 86 can be used in the bit of FIG. I in lieu of the rupture disc assembly 41.
  • the plastic balls 91 can be used to seal the open nozzles shown in FIG. 1 in lieu of the plug 50.
  • Sand Original Percent content Nozzle Erosion nozzle increase of fluid pressure time diameter in nozzle Nozzle (percent) (p.s.i.) (hours) (inches) new area Sintered tung- 10, 000
  • the bit life can be substantially increased by providing the bit with separate nozzle systems described above.
  • an improved bit comprising: a body adapted to be connected to the lower end of a tubular drill string; a first nozzle system including a first set of nozzles secured to the body and flow passage means formed in the body providing fluid communication between the drill string and each of said nozzles, said first set of nozzles being arranged on said body to provide a distributed jet pattern as said bit is rotated and fluid is flowed through said first nozzle system; a second nozzle system including a second set of nozzles secured to the body and flow passage means formed in the body providing fluid communication between the drill string and each of the noz- 'zles of said second set, said second set of nozzles being arranged on said body to provide a distributed jet pattern as said bit is rotated and fluid is flowed through said second nozzle system; closure means disposed in said second nozzle system for preventing the flow of fluid therethrough, said closure means being rendered inoperative in response to the application of a predetermined pressure in the drill string; and
  • closure means includes a rupture disc mounted in each of the nozzles of said second set.
  • first and second flow passages include a common central chamber extending partially through said body, said central chamber being configurated to provide valve seating means therein, said second flow passage extending from said central chamber upstream of said valve seating means to said second set of nozzles, said first flow passage extending from said central chamber downstream of said valve seating means to said first set of nozzles and said means for closing said first nozzle system includes a valve member passable through said drill string into said central chamber and seatable on said valve seating means.

Abstract

An erosion bit for earth-drilling operations having a first nozzle system open for conducting drilling fluid and a second nozzle system closed by a pressure-sensitive closure means. Means are provided for plugging the first nozzle system and for actuating the pressure-sensitive closure means to open the second nozzle system. Drilling fluid can initially be flowed through the first nozzle system until the nozzles become eroded and then through the second nozzle system.

Description

United States Patent Miller et al.
[ Feb, 29, 1972 [54] EROSION DRILLING [72] Inventors: James F. Miller; William C. Maurer, both of Houston, Tex.
[73] Assignee: Esso Production Research Company [22] Filed: Apr. 29, 1970 [21] App1.No.: 32,954
[52] U.S.Cl ..175/237,175/231,175/317, 175/340, 175/393, 175/422 [51] Int.Cl. ,.E2lb 9/10, E21b9/02,E21b 7/18 [58] Field of Search ..175/39, 67, 231, 232, 237, 175/317, 318, 339, 340, 393, 422; 166/222, 223
[56] References Cited UNITED STATES PATENTS 2,324,102 7/1943 Miller et a1 ..175/237 X 2,740,612 4/1956 ..175/393 3,873,092 2/1959 Dwyer ..175/340 X 2,903,239 9/1959 Standridge ..175/393 X 2,945,678 7/1960 Boudreaux et al ..175/317 3,052,298 9/1962 Malott ..166/222 X 3,077,937 2/1963 Tiraspolsky et al. ..175/67 X 3,116,800 1/1964 Kammerer ..175/237 X 3,189,107 6/1965 Galle ..175/393 3,365,007 1/1968 Skipper ..175/317 X Primary Examiner-David H. Brown Attorney-James A. Reilly, John B. Davidson, Lewis H. Eatherton, James E Gilchrist, Robert L. Graham and James E. Reed [5 7] ABSTRACT An erosion bit for earth-drilling operations having a first nozzle system open for conducting drilling fluid and a second nozzle system closed by a pressure-sensitive closure means. Means are provided for plugging the first nozzle system and for actuating the pressure-sensitive closure means to open the second nozzle system. Drilling fluid can initially be flowed through the first nozzle system until the nozzles become eroded and then through the second nozzle system.
4 Claims, 6 Drawing Figures PATENTEDFEB29 I972 SHEET 1 [IF 3 INVENTORS JAMES E MILLER By WILLIAM c. MAURER fdafif 241;
A T TORNEY PATENTEDFEBZQ I972 3 645, 346
' sum 2 OF 3 JAMES F MILLER WILLIAM C. MAURER Il' 'l llll ATTORNEY PATENTEDFEBZQ I972 sum 3 or 3 FIG.6
INVENTORS JAMES F. MILLER WILLIAM C. MAURER BY of A T TORNEY EROSION DRILLING BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to erosion drilling. In one aspect it relates to an improved erosion-drilling method, and in another, to an improved erosion drill bit.
2. Description of the Prior Art Erosion drilling is a technique for drilling boreholes using high velocity hydraulic jets as the principal mechanism for inducing stresses in the formation rock. The basic components of the erosion-drilling system comprise high-pressure pumps, high-pressure drill string, and an erosion bit provided with a plurality of nozzles. The erosion bit can also include auxiliary cutting devices such as cone cutters, drag bit blades or a diamond head. The principal source of energy, however, is derived from the high velocity jets discharging from the nozzles.
The nozzles are sized in relation to the available pump pressure to create high velocity jets (in excess of 500 feet per second) and are positioned on the bit to direct the jets impingingly against the formation rock. The high kinetic energy of the jets is thus spent on the rock causing it to shatter into fragments small enough to be carried away from the bit by the fluid stream returning to the surface through the annulus. The number and pattern geometry of the nozzles depend to a large extent upon the available mounting space on the bit body. An erosion bit equipped with drag bit blades or a diamond head provides space for mounting several nozzles in a variety of patterns. The noule pattern generally is such to provide a sweeping jet action as the bit is rotated. Cone cutters mounted on the erosion bit, on the other hand, greatly restrict the number and location of the nozzles. Moreover, the nozzles must be arranged so that the high velocity jets do not impinge against the cones.
Erosion drilling has a power output potential many times greater than that attainable with conventional rotary drilling equipment. Notwithstanding the potential of the erosiondrilling concept, it has not received broad application in commercial drilling operations, partly because of the short life span of the bits. At the extreme velocities and pressures required in erosion drilling, the nozzles wash out in a relatively.
short period of time which heretofore has necessitated withdrawal of the bit to replace the nozzles. For deep wells, this is a time-consuming and expensive operation.
It has long been recognized that if the erosion-drilling concept is to have practical application, even on a limited basis, equipment and techniques must be developed to increase bit life. Advances in metallurgy have produced nozzles having improved wear-resistant properties; however, nozzle erosion remains a major problem, particularly where the drilling fluid has sand particles or other abrasives entrained therein.
Retractible bits designed to permit replacement of eroded nozzles without tripping the drill string have been proposed but to date have not been entirely successful because of the difficulties experienced in dislodging the retractible portion of the bit from the bit body.
SUMMARY OF THE INVENTION The purpose of the present invention is to prolong the operable lifespan of an erosion bit. The erosion bit constructed according to the present invention contains at least two sets of nozzle systems, one system being open for conducting drilling fluid and the other set being closed by a pressureactuable closure means. In practice, the oil or gas well can be drilled using conventional rotary techniques until such a depth or such a formation is reached that erosion drilling is more economical. In this regard it should be pointed out that erosion drilling because of its high power output is particularly suited to drilling in hard to medium-hard formations. In order to convert from conventional to erosion drilling, the drill string is withdrawn from the borehole, the conventional bit replaced with an erosion bit, and returned to the bottom of the borehole. Initially, erosion drilling is through the open set of nozzles. When the nozzles become worn as evidenced by marked reductions in pump pressure or drilling rate, the first nozzle system can be closed by pumping a plug or plugs down the drill string. The plug or plugs seat in the bit closing all the nozzles. The pressure in the drill string is increased to the actuation pressure of the closure means, which is substantially above the normal drilling pressure. Actuation of the closure means opens the second nozzle system permitting the drilling to be resumed. A preferred form of the closure means is a rupture disc mounted in the main flow course of the second nozzle system or in the individual nozzles thereof. The rupture disc or discs provide a positive seal, contain no moving parts, and are easily adapted to the erosion bit.
If space permits, three separate nozzle systems can be used, in which case the second and third sets are provided with closure means actuable at substantially different pressures. The drilling operation then will proceed in sequential order using the first system, the second system, and finally the third system.
Experience has shown that in deep wells, the nozzles tend to fail before any of the other parts, particularly where the auxiliary cutting device is in the form of a diamond head or drag bit blades. Thus by providing the bit with two or more nozzle systems, the operable lifespan of the bit can be substantially increased.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an end view of an erosion bit constructed according to the present invention.
FIG. 2 is a simplified, longitudinal sectional view of the bit shown in FIG. 1, the cutting plane taken generally along the line 2-2 thereof. abrasive.
FIG. 3 is an end view of another embodiment of the present invention.
FIG. 4 is a longitudinal sectional view of the bit shown in FIG. 3, the cutting plane taken generally along the line 4-4 thereof.
FIG. 5 is an enlarged, sectional view of the burst plate assembly adapted to be mounted in the bit shown in FIGS. 1 and 2 FIG. 6 is an enlarged, sectional view of an insert nozzle adapted to be connected to the bit shown in FIGS. 3 and 4.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in connection with an erosion bit provided with drag bit blades (FIGS. 1, 2, and 5) and with an erosion bit provided with cone cutters (FIGS. 3, 4, and 6). In either embodiment the bit contains at least two sets of nozzle systems, closure means for maintaining one system closed, and plugging means for closing the other system. Separate closure means and separate plugging means are disclosed in the two embodiments but it should be understood that either bit can be constructed to accommodate any combination of the closure means and plugging means dis closed.
With reference to FIGS. 1 and 2, an erosion bit 10 is seen to include a body 11 and a shank 12 threaded for connection to the lower end of a drill string (not shown). The body 11 has formed therein four radial wings 13, 14, 15, and 16 arranged in circumferentially spaced relation. Mounted on the bottom surface of each wing is a drag bit blade blades 17, 18, 19, and 20 being secured, respectively, to wings 13, 14, 15, and 16. The leading edges of each of the blades 17-20 extend in a radial direction from the axis of the body 11 and are disposed to effect a cutting action attendant to counterclockwise rotation of the bit 10 as viewed in FIG. 1. The blades 17-20 can be welded to the body 11 by conventional techniques and provided with hard facing material such as tungsten carbide. Altematively, the cutting blades l7-20 can be integrally formed in the bit body 11 and surfaced with the hard facing material. The outer peripheries of the blades l7-20 and wings 13-16 can be surfaced with diamonds to maintain bit gauge.
A central chamber 21 extends through the shank 12 and into the bit body 11 terminating at end wall 22 near the bottom of the bit body 11. The upper end of the shank 12 is internally beveled to provide a tapered inlet into the chamber 21. An upper longitudinal portion 23 of the chamber 21 is full opening having about the same diameter as the inside diameter of the drill string whereas a lower portion 24 is of reduced cross section. Beveled shoulder 25 interconnects the chamber walls defining upper and lower portions 23 and 24.
Each of the wings 13-16 are provided with a nozzle system which includes a set of nozzles and a flow course interconnecting the central chamber 21 and the nozzles. In accordance with this invention the nozzle systems are arranged in paired relation with one system being open for conducting fluid and the other system being provided with closure means to prevent the flow of fluid therethrough. In this embodiment, the nozzle system in wing 14 is arranged to cooperate with the nozzle system in wing 16. For the purpose of this disclosure, it can be assumed that the paired nozzle systems in wings l4 and 16 are identical to the paired nozzle systems in wings 13 and 15.
As shown in FIG. 2, the flow passages for the nozzle system in wing 14 includes a common header 26 which extends outwardly from lower portion 24 of the central passageway 21, and individual flow courses 27, 28, and 29 which extend downwardly from the common header 26 through the bottom of the bit body 11. In the area of the flow course exits, the body can be counterbored and the flow course exits threaded to permit attachment of insert nozzles 30, 31, and 32 to the body 11.
The nozzle system provided in wing 16 and adapted to cooperate with the nozzle system in wing 14 includes a common header 33 which extends radially outwardly from the upper portion 23 of central chamber 21 through wing 16 exiting at threaded opening 33a. Individual flow courses 34, 35, and 36 extend downwardly from the common header 33 and exit through the bit body 11. The bit body 11 can be counterbored in the area of the discharge ends and the lower extremities of the flow courses 34-36 can be threaded to permit attachment of nozzles 37, 38, and 39 to the bit body 11.
An inner portion 40 of the common header 33 adjacent the central chamber 21 is threaded to receive pressure-sensitive closure means for maintaining the flow passages of the second set of nozzles closed. Preferably, the closure means includes a frangible member which is rupturable at a predetermined upstream pressure. In this embodiment the closure means is in the form of a rupture disc assembly 41. As shown in FIG. 5, the rupture disc assembly 41 includes a steel tube 42, a disc 43, and a bushing 44. The outer periphery of the tube 42 is threaded for connection to the threaded portion 40 of the header 33. One end 45 of the tube 42 is counterbored and provided with internal threads for receiving the bushing 44. In assembling the parts, the disc 43 is inserted into the counterbored end 45 of the tube 42 positioned to bridge the internal opening thereof. Bushing 44 is screwed into the tube 42 clampingly engaging the flanges of the disc 43. The assembly 41 is then inserted through the opening 33a and screwed into the body 11. Finally, a pipe plug 46 is screwed to threaded opening 33a closing the outer end of header 33. O-ring seals, provided on the disc assembly 41 and the plug 46, maintain fluidtight seals for the threaded connections.
As mentioned previously, the nozzle system in wing 13 can be similar to that in wing 14 including internal flow passages (not shown) leading to nozzles 47, 48, and 49 (see FIG. 1). Likewise, the nozzle system in wing can be similar to that in wing 16 including internal flow passages (not shown), a rupture disc assembly (not shown) and nozzles 50, 51, and 52 (see FIG. 1).
The nozzles 30-32, 37-39, and 4752 can be constructed by the method disclosed in U.S. Pat. No. 3,131,779 to D. S. Rowley et al. Each nozzle includes a metal carbide insert mounted in a steel sleeve. The steel sleeve can be threaded for screwing into the threaded flow course exits. A sealing element extending around the outer periphery of the nozzle assembly insures a fluidtight seal at the threaded connection.
As shown in FIG. 1, the nozzles of the paired systems are arranged in diametric alignment. However, the pairings and nozzle patterns can be according to any geometry permissible within the space limitations of the bit 10. Moreover, the nozzle dimensions and nozzle pattern of one system can be different from those of its paired system permitting the bit 10 to adapt to different drilling conditions by merely closing one nozzle system and opening the other.
Thus, the bit 10 as run on the drilling string includes two open nozzle systems (wings 13 and 14) and two closed systems (wings 15 and 16). The open systems communicate with the central chamber 21 below the beveled shoulder 25, whereas the closed systems are adapted to communicate with the central chamber above the shoulder 25.
In operation, erosion drilling is initially performed using the nozzle systems of wings 13 and 14 and proceeds until the nozzles 30-32 and 47-49 become eroded as evidenced by reduced drilling rates or pressure. At this time, a plug 50 conflgurated to seat on shoulder 25 is pumped down the drill string and into the chamber 21. As shown in FIG. 1, the plug 50 has a tapered leading end 51, a cylindrical portion 52 provided with an annular sealing member 53, and a beveled flange 54 shaped to mate with shoulder 25. The plug 50 can also be provided with a wire line fishing head 55 to permit running and retrieving by use of wire line equipment. Once the plug 50 seats on the beveled shoulder 25, the pressure in chamber 21 upstream of the plug 50 is increased by surface pumping until the rupture pressure of the disc 43 is reached rendering the assembly 41 inoperative as a closure means. The disc 43 is selected to have a rupture pressure substantially higher than the maximum drilling pressure. Thus if the maximum upstream nozzle pressure during drilling operations is to be 15,000 p.s.i., the rupture disc 43 of appropriate material and thickness is selected to break at about 18,000 p.s.i. Suitable disc materials include aluminum, copper, steel, nickel, Monel, stainless steel, and the like. Any disc debris that becomes lodged in the nozzles will be quickly eroded away by the high velocity jets.
Another embodiment of the present invention will be described with reference to FIGS. 3, 4, and 6. As shown in FIGS. 3 and 4, an erosion bit 60 includes a body 61 and a shank 62 threaded for connection to the bottom of a drill string (not shown). The bit 60 includes two cone cutters 63 and 64 journaled to the body 61 in the conventional manner. A central chamber 65 extends axially through shank 62 into the bit body 61 terminating at end wall 66.
Flow courses 67 and 68 formed in the body 61 extend radially outwardly from the central chamber 65, bend downwardly, and exit through the bottom surface of the bit body 61. Counterbores 69 and 70 surrounding the flow course exits receive extension tubes 71 and 72. The tubes 71 and 72 are welded to the body 61 and are internally machined to provide a smooth continuation of flow courses 67 and 68. The lower ends of tubes 71 and 72 are provided with end walls 73 and 74, respectively, which are located slightly above the lower extremity of the cone cutters 63 and 64. Each of the end walls 73 and 74 are prov ded with side-by-side boreholes threaded for receiving flow,nozzles. As illustrated, the extension tubes have mounted in their end walls 73 and 74 normally open nozzles 75 and 76, respectively, and normally closed nozzles 77 and 78, respectively. The normally open nozzles 75 and 76 can be constructed by the method described in U.S. Pat. No. 3,131,779 to D. S. Rowley et al., each having a mounting sleeve and a hollow cylindrical nozzle secured therein. The internal passages through the nozzles 75 and 76 are provided with tapered inlets 79 and 80, respectively.
The normally closed nozzles 77 and 78 are constructed to include closure means for maintaining the flow passages therethrough closed during a portion of the drilling operation. As shown in FIG. 6 the nozzles 77 and 78 each include a steel or other ferroalloy support sleeve 81 having a threaded section 82 milled in its outer periphery, an internal bore 83, and a hex head 84. O-ring 92 provides a fluidtight seal for threaded connection to the body 61. Secured to the interior surface of the sleeve 81 are an upper insert 85, a rupture disc 86, and a lower insert 87 arranged in stacked relation. The stacked parts 85, 86, and 87 can be inserted as a unit and silver brazed to the sleeve 81 by conventional welding techniques. The inserts 85 and 87 are hollow having aligned internal openings 88 and 89. Opening 88 can be provided with a tapered inlet 90. The inserts 85 and 87 can be composed of abrasive-resistant material such as one of the hard ceramics, the hard metal carbides, particularly tungsten carbide, being preferred. The disc 86 can be composed of aluminum, copper, steel, nickel, Monel, stainless steel, and the like. The discs 86 are precision made and have a bursting pressure within about 5 percent of a specified pressure.
Thus during initial erosion-drilling operations, the drilling fluid flows through two passages: one comprising course 67, tube 71 and nozzle 75 and the other comprising course 68, tube 72, and nozzle 76. Drilling continues through these passages until the drilling rate or pressure has reduced sufficiently to indicate erosion of the nozzles 75 and 76. Sealing balls 91 composed of tough, resilient material such as teflon or nylon or other plastic material can then be pumped down the drill string through the flow courses until the balls seat in nozzle inlets 79 and 80. The balls 91 will follow the stream of flow and be carried to the open nozzles 75 and 76 and nest in the nozzle inlet. The application of pressure causes the balls to deform to the contour of the inlets 79 and 80 much in the manner illustrated in FIG. 4. The resulting pressure-seal can withstand pressures as high as 20,000 p.s.i. In this embodiment two balls 91 can be dropped at sufficient time intervals to insure that both balls do not enter the same flow course. When the pressure seal has been effected by the balls 91 seating in noules 75 and 76, pressuring up of the drill string causes the discs 86 to rupture at predetermined levels, opening the second set of nozzles 77 and 78. Drilling then can be resumed through these nozzles. The high velocity jets rapidly erode away the disc fragments remaining in the nozzle openings.
In the typical erosion-drilling operation, the maximum nozzle pressure will be in the order of 15,000 p.s.i. Under these conditions, the rupture discs 86 should be sized to rupture at pressures in the order of 18,000 to 20,000 p.s.i. The pump pressure should be increased to at least a few hundred p.s.i. above the designated burst pressure to insure that both discs are broken.
The nozzles 77 and 78 containing the rupture discs 86 can be used in the bit of FIG. I in lieu of the rupture disc assembly 41. Likewise the plastic balls 91 can be used to seal the open nozzles shown in FIG. 1 in lieu of the plug 50.
Laboratory experiments revealed that sintered tungsten carbide nozzles and boron carbide nozzles are susceptible to rapid erosion by drilling fluids containing abrasives. These data are particularly important in evaluating erosion drilling in areas where weighted drilling fluids are required. Drilling fluids generally become contaminated with abrasive particles and are therefore considered to be highly abrasive. The following table summarizes the laboratory data:
Sand Original Percent content Nozzle Erosion nozzle increase of fluid pressure time diameter in nozzle Nozzle (percent) (p.s.i.) (hours) (inches) new area Sintered tung- 10, 000
sten carbide- 2. 0 to 3. 2 0. 28
Boron carbide. 2.0 to 2. 9 0.094 13 14,000
From these data it is evident that the effectiveness of the erosion-drilling mechanism becomes drastically reduced within a relatively short period of time particularly when using abrasive drilling fluids. Moreover, it is unlikely that other bit parts, e.g., cone cutters, scraper blades, or a diamond head will show appreciable wear in this period of time. In accordance with an object of the present invention, the bit life can be substantially increased by providing the bit with separate nozzle systems described above.
We claim:
1. In an apparatus for drilling boreholes using high velocity jet streams, an improved bit comprising: a body adapted to be connected to the lower end of a tubular drill string; a first nozzle system including a first set of nozzles secured to the body and flow passage means formed in the body providing fluid communication between the drill string and each of said nozzles, said first set of nozzles being arranged on said body to provide a distributed jet pattern as said bit is rotated and fluid is flowed through said first nozzle system; a second nozzle system including a second set of nozzles secured to the body and flow passage means formed in the body providing fluid communication between the drill string and each of the noz- 'zles of said second set, said second set of nozzles being arranged on said body to provide a distributed jet pattern as said bit is rotated and fluid is flowed through said second nozzle system; closure means disposed in said second nozzle system for preventing the flow of fluid therethrough, said closure means being rendered inoperative in response to the application of a predetermined pressure in the drill string; and means passable through the drill string and adapted to lodge in said bit body to close said first nozzle system.
2. The invention as recited in claim 1 wherein said flow passage of said second system includes a common header and said closure means includes a member disposed across said common header.
3. The invention as recited in claim 1 wherein said closure means includes a rupture disc mounted in each of the nozzles of said second set.
4. The invention as recited in claim 1 wherein said first and second flow passages include a common central chamber extending partially through said body, said central chamber being configurated to provide valve seating means therein, said second flow passage extending from said central chamber upstream of said valve seating means to said second set of nozzles, said first flow passage extending from said central chamber downstream of said valve seating means to said first set of nozzles and said means for closing said first nozzle system includes a valve member passable through said drill string into said central chamber and seatable on said valve seating means.

Claims (4)

1. In an apparatus for drilling boreholes using high velocity jet streams, an improved bit comprising: a body adapted to be connected to the lower end of a tubular drill string; a first nozzle system including a first set of nozzles secured to the body and flow passage means formed in the body providing fluid communication between the drill string and each of said nozzles, said first set of nozzles being arranged on said body to provide a distributed jet pattern as said bit is rotated and fluid is flowed through said first nozzle system; a second nozzle system including a second set of nozzles secured to the body and flow passage means formed in the body providing fluid communication between the drill string and each of the nozzles of said second set, said second set of nozzles being arranged on said body to provide a distributed jet pattern as said bit is rotated and fluid is flowed through said second nozzle system; closure means disposed in said second nozzle system for preventing the flow of fluid therethrough, said closure means being rendered inoperative in response to the application of a predetermined pressure in the drill string; and means passable through the drill string and adapted to lodge in said bit body to close said first nozzle system.
2. The invention as recited in claim 1 wherein said flow passage of said second system includes a common header and said closure means includes a member disposed across said common header.
3. The invention as recited in claim 1 wherein said closure means includes a rupture disc mounted in each of the nozzles of said second set.
4. The invention as recited in claim 1 wherein said first and second flow passages include a common central chamber extending partially through said body, said central chamber being configurated to provide valve seating means therein, said second flow passage extending from said central chamber upstream of said valve seating means to saiD second set of nozzles, said first flow passage extending from said central chamber downstream of said valve seating means to said first set of nozzles and said means for closing said first nozzle system includes a valve member passable through said drill string into said central chamber and seatable on said valve seating means.
US32954A 1970-04-29 1970-04-29 Erosion drilling Expired - Lifetime US3645346A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US3295470A 1970-04-29 1970-04-29

Publications (1)

Publication Number Publication Date
US3645346A true US3645346A (en) 1972-02-29

Family

ID=21867772

Family Applications (1)

Application Number Title Priority Date Filing Date
US32954A Expired - Lifetime US3645346A (en) 1970-04-29 1970-04-29 Erosion drilling

Country Status (1)

Country Link
US (1) US3645346A (en)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3897836A (en) * 1973-10-18 1975-08-05 Exotech Apparatus for boring through earth formations
US3924698A (en) * 1974-04-08 1975-12-09 Gulf Research Development Co Drill bit and method of drilling
US3927723A (en) * 1971-06-16 1975-12-23 Exotech Apparatus for drilling holes utilizing pulsed jets of liquid charge material
US3993974A (en) * 1974-06-03 1976-11-23 Senturion Sciences, Inc. Seismic method for determining the position of the bit on a drill stem in a deep borehole
US4068731A (en) * 1976-11-17 1978-01-17 Smith International, Inc. Extended nozzle and bit stabilizer and method of producing
US4114705A (en) * 1976-05-26 1978-09-19 Societe B.V.S. Rock drilling tool having pulsed jets
FR2421271A2 (en) * 1978-03-30 1979-10-26 Inst Francais Du Petrole Drilling tool incorporating suction jet - creates pressure difference accelerating flow of debris-laden mud, keeping tool clean, increasing drilling speed and reducing wear
FR2450937A1 (en) * 1979-03-09 1980-10-03 Commissariat Energie Atomique Method of boring through weak clay layer - uses hollow tool with pressurised fluid jets to bore hole whose walls are cemented
FR2456209A1 (en) * 1979-05-11 1980-12-05 Christensen Inc APPARATUS FOR SAMPLING CORES FROM LARGE DEPTHS
US4306627A (en) * 1977-09-22 1981-12-22 Flow Industries, Inc. Fluid jet drilling nozzle and method
US4313570A (en) * 1979-11-20 1982-02-02 Flow Industries, Inc. High pressure cutting nozzle with on-off capability
FR2488323A1 (en) * 1980-08-04 1982-02-12 Flow Ind Inc DRILLING ADJUSTMENT BY A FLUID JET AND DRILLING METHOD
DE3029963A1 (en) * 1980-08-07 1982-03-04 Flow Industries, Inc., Kent, Wash. High pressure liq. nozzle for rock cutting - has pressure source connectable housing with jet forming member, rotatable for liq. jet cutting dia. adjustment
US4359115A (en) * 1979-03-08 1982-11-16 Construction De Materiels De Mines S.A. Novel rotary drill bits and drilling process
US4360069A (en) * 1980-07-21 1982-11-23 Kenneth Davis Diamond drill bits
US4367902A (en) * 1980-02-14 1983-01-11 Maschinenfabrik Augsberg-Nurnberg Aktiengesellschaft Tool for hydromechanical or hydraulic mining or for cutting mineral or bituminous materials
US4499958A (en) * 1983-04-29 1985-02-19 Strata Bit Corporation Drag blade bit with diamond cutting elements
FR2558891A1 (en) * 1984-02-01 1985-08-02 Charbonnages De France HIGH PRESSURE JETS-ASSISTED ROTATING FORCE SIZE
FR2566832A1 (en) * 1984-06-27 1986-01-03 Inst Francais Du Petrole METHOD AND IMPROVEMENT TO DRILLING TOOLS FOR HIGH EFFICIENCY IN CLEANING THE SIZE FRONT
FR2566833A1 (en) * 1984-06-27 1986-01-03 Inst Francais Du Petrole METHOD AND IMPROVEMENT TO DRILLING TOOLS HAVING WATER PASSAGES ENABLING GREAT EFFICIENCY IN CLEANING THE SIZE FRONT
US4603750A (en) * 1984-10-02 1986-08-05 Hughes Tool Company - Usa Replaceable bit nozzle
US4611672A (en) * 1984-06-18 1986-09-16 Vereinigte Edelstahlwerke Aktiengesellschaft Drill bit
US4923021A (en) * 1988-12-30 1990-05-08 Conoco Inc. Combination bit for coking oven
US4993503A (en) * 1990-03-27 1991-02-19 Electric Power Research Institute Horizontal boring apparatus and method
US5879057A (en) * 1996-11-12 1999-03-09 Amvest Corporation Horizontal remote mining system, and method
WO1999019597A1 (en) * 1997-10-14 1999-04-22 Dresser Industries, Inc. Rock bit with improved nozzle placement
US5934389A (en) * 1993-07-06 1999-08-10 Ramsey; Mark S. Method for increasing hydraulic efficiency of drilling
US6186251B1 (en) * 1998-07-27 2001-02-13 Baker Hughes Incorporated Method of altering a balance characteristic and moment configuration of a drill bit and drill bit
BE1013515A5 (en) * 1998-03-27 2002-03-05 Bakers Hughes Inc Drill arrangement tricone.
US6364418B1 (en) 1996-11-12 2002-04-02 Amvest Systems, Inc. Cutting heads for horizontal remote mining system
EP1275815A1 (en) * 2001-07-11 2003-01-15 Smith International, Inc. Drill Bit Having Adjustable Total Flow Area
EP1616071A2 (en) * 2003-04-16 2006-01-18 Particle Drilling, Inc. Drill bit
US20060054357A1 (en) * 2004-09-10 2006-03-16 Centala Prabhakaran K Two-cone drill bit
US20060054355A1 (en) * 2004-02-26 2006-03-16 Smith International, Inc. Nozzle bore for PDC bits
US20070143086A1 (en) * 2005-12-20 2007-06-21 Smith International, Inc. Method of manufacturing a matrix body drill bit
GB2437434A (en) * 2004-09-10 2007-10-24 Smith International Two cone drill bit having four nozzles
US20080017417A1 (en) * 2003-04-16 2008-01-24 Particle Drilling Technologies, Inc. Impact excavation system and method with suspension flow control
US20080230275A1 (en) * 2003-04-16 2008-09-25 Particle Drilling Technologies, Inc. Impact Excavation System And Method With Injection System
GB2452629A (en) * 2007-09-06 2009-03-11 Smith International A drill bit having including utility blades which lack cutters
US20090090557A1 (en) * 2007-10-09 2009-04-09 Particle Drilling Technologies, Inc. Injection System And Method
US20090126994A1 (en) * 2007-11-15 2009-05-21 Tibbitts Gordon A Method And System For Controlling Force In A Down-Hole Drilling Operation
US20090200084A1 (en) * 2004-07-22 2009-08-13 Particle Drilling Technologies, Inc. Injection System and Method
US20090205871A1 (en) * 2003-04-16 2009-08-20 Gordon Tibbitts Shot Blocking Using Drilling Mud
US20100155063A1 (en) * 2008-12-23 2010-06-24 Pdti Holdings, Llc Particle Drilling System Having Equivalent Circulating Density
US20100294567A1 (en) * 2009-04-08 2010-11-25 Pdti Holdings, Llc Impactor Excavation System Having A Drill Bit Discharging In A Cross-Over Pattern
US8037950B2 (en) 2008-02-01 2011-10-18 Pdti Holdings, Llc Methods of using a particle impact drilling system for removing near-borehole damage, milling objects in a wellbore, under reaming, coring, perforating, assisting annular flow, and associated methods
US8113300B2 (en) 2004-07-22 2012-02-14 Pdti Holdings, Llc Impact excavation system and method using a drill bit with junk slots
US20120138298A1 (en) * 1999-02-25 2012-06-07 Giroux Richard L Methods and apparatus for wellbore construction and completion
US8869919B2 (en) 2007-09-06 2014-10-28 Smith International, Inc. Drag bit with utility blades
EP2948612A4 (en) * 2013-01-25 2017-02-22 Halliburton Energy Services, Inc. Hydraulic activation of mechanically operated bottom hole assembly tool
WO2021216924A1 (en) * 2020-04-24 2021-10-28 Saudi Arabian Oil Company Concealed nozzle drill bit
US20220389765A1 (en) * 2021-06-08 2022-12-08 Baker Hughes Oilfield Operations Llc Earth-boring tools with through-the-blade fluid ports, and related systems and methods

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2324102A (en) * 1940-02-09 1943-07-13 Eastman Oil Well Survey Co Means for directional drilling
US2740612A (en) * 1954-02-23 1956-04-03 Phipps Orville Two-arm rotary drill bit
US2903239A (en) * 1956-09-06 1959-09-08 Houston Oil Field Mat Co Inc Eccentric spud bit
US2945678A (en) * 1957-02-21 1960-07-19 Phillips Petroleum Co Bottom hole drilling fluid control valve
US3052298A (en) * 1960-03-22 1962-09-04 Shell Oil Co Method and apparatus for cementing wells
US3077937A (en) * 1956-12-07 1963-02-19 Tiraspolsky Wladimir Drilling turbine
US3116800A (en) * 1960-12-12 1964-01-07 Lamphere Jean K Apparatus for conditioning well bores
US3189107A (en) * 1961-10-30 1965-06-15 Hughes Tool Co Flushing passageway closures with reverse pressure rupturable portion
US3365007A (en) * 1965-10-24 1968-01-23 Wilson Supply Co Directional drilling tool and method
US3873092A (en) * 1973-03-05 1975-03-25 Richard D Fagan Method of playing a keno-zodiac game

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2324102A (en) * 1940-02-09 1943-07-13 Eastman Oil Well Survey Co Means for directional drilling
US2740612A (en) * 1954-02-23 1956-04-03 Phipps Orville Two-arm rotary drill bit
US2903239A (en) * 1956-09-06 1959-09-08 Houston Oil Field Mat Co Inc Eccentric spud bit
US3077937A (en) * 1956-12-07 1963-02-19 Tiraspolsky Wladimir Drilling turbine
US2945678A (en) * 1957-02-21 1960-07-19 Phillips Petroleum Co Bottom hole drilling fluid control valve
US3052298A (en) * 1960-03-22 1962-09-04 Shell Oil Co Method and apparatus for cementing wells
US3116800A (en) * 1960-12-12 1964-01-07 Lamphere Jean K Apparatus for conditioning well bores
US3189107A (en) * 1961-10-30 1965-06-15 Hughes Tool Co Flushing passageway closures with reverse pressure rupturable portion
US3365007A (en) * 1965-10-24 1968-01-23 Wilson Supply Co Directional drilling tool and method
US3873092A (en) * 1973-03-05 1975-03-25 Richard D Fagan Method of playing a keno-zodiac game

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3927723A (en) * 1971-06-16 1975-12-23 Exotech Apparatus for drilling holes utilizing pulsed jets of liquid charge material
US3897836A (en) * 1973-10-18 1975-08-05 Exotech Apparatus for boring through earth formations
US3924698A (en) * 1974-04-08 1975-12-09 Gulf Research Development Co Drill bit and method of drilling
US3993974A (en) * 1974-06-03 1976-11-23 Senturion Sciences, Inc. Seismic method for determining the position of the bit on a drill stem in a deep borehole
US4114705A (en) * 1976-05-26 1978-09-19 Societe B.V.S. Rock drilling tool having pulsed jets
US4068731A (en) * 1976-11-17 1978-01-17 Smith International, Inc. Extended nozzle and bit stabilizer and method of producing
US4306627A (en) * 1977-09-22 1981-12-22 Flow Industries, Inc. Fluid jet drilling nozzle and method
FR2421271A2 (en) * 1978-03-30 1979-10-26 Inst Francais Du Petrole Drilling tool incorporating suction jet - creates pressure difference accelerating flow of debris-laden mud, keeping tool clean, increasing drilling speed and reducing wear
US4359115A (en) * 1979-03-08 1982-11-16 Construction De Materiels De Mines S.A. Novel rotary drill bits and drilling process
FR2450937A1 (en) * 1979-03-09 1980-10-03 Commissariat Energie Atomique Method of boring through weak clay layer - uses hollow tool with pressurised fluid jets to bore hole whose walls are cemented
FR2456209A1 (en) * 1979-05-11 1980-12-05 Christensen Inc APPARATUS FOR SAMPLING CORES FROM LARGE DEPTHS
US4313570A (en) * 1979-11-20 1982-02-02 Flow Industries, Inc. High pressure cutting nozzle with on-off capability
US4367902A (en) * 1980-02-14 1983-01-11 Maschinenfabrik Augsberg-Nurnberg Aktiengesellschaft Tool for hydromechanical or hydraulic mining or for cutting mineral or bituminous materials
US4360069A (en) * 1980-07-21 1982-11-23 Kenneth Davis Diamond drill bits
FR2488323A1 (en) * 1980-08-04 1982-02-12 Flow Ind Inc DRILLING ADJUSTMENT BY A FLUID JET AND DRILLING METHOD
DE3029963A1 (en) * 1980-08-07 1982-03-04 Flow Industries, Inc., Kent, Wash. High pressure liq. nozzle for rock cutting - has pressure source connectable housing with jet forming member, rotatable for liq. jet cutting dia. adjustment
US4499958A (en) * 1983-04-29 1985-02-19 Strata Bit Corporation Drag blade bit with diamond cutting elements
FR2558891A1 (en) * 1984-02-01 1985-08-02 Charbonnages De France HIGH PRESSURE JETS-ASSISTED ROTATING FORCE SIZE
EP0151548A1 (en) * 1984-02-01 1985-08-14 Etablissement public dit: CHARBONNAGES DE FRANCE Drill bit for combined rotary and high pressure jet drilling
US4611672A (en) * 1984-06-18 1986-09-16 Vereinigte Edelstahlwerke Aktiengesellschaft Drill bit
FR2566832A1 (en) * 1984-06-27 1986-01-03 Inst Francais Du Petrole METHOD AND IMPROVEMENT TO DRILLING TOOLS FOR HIGH EFFICIENCY IN CLEANING THE SIZE FRONT
FR2566833A1 (en) * 1984-06-27 1986-01-03 Inst Francais Du Petrole METHOD AND IMPROVEMENT TO DRILLING TOOLS HAVING WATER PASSAGES ENABLING GREAT EFFICIENCY IN CLEANING THE SIZE FRONT
EP0169110A1 (en) * 1984-06-27 1986-01-22 Institut Français du Pétrole Drilling tools with water passages for a highly efficient cleaning of the work surface
EP0170548A1 (en) * 1984-06-27 1986-02-05 Institut Français du Pétrole Drilling tools having a high cleaning efficiency at the work surface
US4603750A (en) * 1984-10-02 1986-08-05 Hughes Tool Company - Usa Replaceable bit nozzle
US4923021A (en) * 1988-12-30 1990-05-08 Conoco Inc. Combination bit for coking oven
US4993503A (en) * 1990-03-27 1991-02-19 Electric Power Research Institute Horizontal boring apparatus and method
US5934389A (en) * 1993-07-06 1999-08-10 Ramsey; Mark S. Method for increasing hydraulic efficiency of drilling
US6364418B1 (en) 1996-11-12 2002-04-02 Amvest Systems, Inc. Cutting heads for horizontal remote mining system
US5879057A (en) * 1996-11-12 1999-03-09 Amvest Corporation Horizontal remote mining system, and method
WO1999019597A1 (en) * 1997-10-14 1999-04-22 Dresser Industries, Inc. Rock bit with improved nozzle placement
BE1013515A5 (en) * 1998-03-27 2002-03-05 Bakers Hughes Inc Drill arrangement tricone.
US6186251B1 (en) * 1998-07-27 2001-02-13 Baker Hughes Incorporated Method of altering a balance characteristic and moment configuration of a drill bit and drill bit
US8403078B2 (en) * 1999-02-25 2013-03-26 Weatherford/Lamb, Inc. Methods and apparatus for wellbore construction and completion
US20120138298A1 (en) * 1999-02-25 2012-06-07 Giroux Richard L Methods and apparatus for wellbore construction and completion
US9637977B2 (en) 1999-02-25 2017-05-02 Weatherford Technology Holdings, Llc Methods and apparatus for wellbore construction and completion
EP1275815A1 (en) * 2001-07-11 2003-01-15 Smith International, Inc. Drill Bit Having Adjustable Total Flow Area
US6698538B2 (en) 2001-07-11 2004-03-02 Smith International, Inc. Drill bit having adjustable total flow area
US7757786B2 (en) 2003-04-16 2010-07-20 Pdti Holdings, Llc Impact excavation system and method with injection system
US7909116B2 (en) 2003-04-16 2011-03-22 Pdti Holdings, Llc Impact excavation system and method with improved nozzle
US8342265B2 (en) 2003-04-16 2013-01-01 Pdti Holdings, Llc Shot blocking using drilling mud
US20080017417A1 (en) * 2003-04-16 2008-01-24 Particle Drilling Technologies, Inc. Impact excavation system and method with suspension flow control
US7793741B2 (en) 2003-04-16 2010-09-14 Pdti Holdings, Llc Impact excavation system and method with injection system
US20080230275A1 (en) * 2003-04-16 2008-09-25 Particle Drilling Technologies, Inc. Impact Excavation System And Method With Injection System
EP1616071A2 (en) * 2003-04-16 2006-01-18 Particle Drilling, Inc. Drill bit
US8162079B2 (en) 2003-04-16 2012-04-24 Pdti Holdings, Llc Impact excavation system and method with injection system
US7798249B2 (en) 2003-04-16 2010-09-21 Pdti Holdings, Llc Impact excavation system and method with suspension flow control
US20090205871A1 (en) * 2003-04-16 2009-08-20 Gordon Tibbitts Shot Blocking Using Drilling Mud
US20060054355A1 (en) * 2004-02-26 2006-03-16 Smith International, Inc. Nozzle bore for PDC bits
US7325632B2 (en) 2004-02-26 2008-02-05 Smith International, Inc. Nozzle bore for PDC bits
US20090200084A1 (en) * 2004-07-22 2009-08-13 Particle Drilling Technologies, Inc. Injection System and Method
US7997355B2 (en) 2004-07-22 2011-08-16 Pdti Holdings, Llc Apparatus for injecting impactors into a fluid stream using a screw extruder
US8113300B2 (en) 2004-07-22 2012-02-14 Pdti Holdings, Llc Impact excavation system and method using a drill bit with junk slots
GB2437434A (en) * 2004-09-10 2007-10-24 Smith International Two cone drill bit having four nozzles
US20100132510A1 (en) * 2004-09-10 2010-06-03 Smith International, Inc. Two-cone drill bit
US7681670B2 (en) 2004-09-10 2010-03-23 Smith International, Inc. Two-cone drill bit
US20060054357A1 (en) * 2004-09-10 2006-03-16 Centala Prabhakaran K Two-cone drill bit
GB2417969B (en) * 2004-09-10 2008-01-23 Smith International Two-cone drill bit
GB2437434B (en) * 2004-09-10 2008-10-29 Smith International Two-cone drill bit
US20070143086A1 (en) * 2005-12-20 2007-06-21 Smith International, Inc. Method of manufacturing a matrix body drill bit
US7694608B2 (en) 2005-12-20 2010-04-13 Smith International, Inc. Method of manufacturing a matrix body drill bit
US7926596B2 (en) 2007-09-06 2011-04-19 Smith International, Inc. Drag bit with utility blades
US8869919B2 (en) 2007-09-06 2014-10-28 Smith International, Inc. Drag bit with utility blades
GB2452629B (en) * 2007-09-06 2012-01-11 Smith International Drag bit with utility blades
US20090065263A1 (en) * 2007-09-06 2009-03-12 Smith International, Inc. Drag bit with utility blades
GB2452629A (en) * 2007-09-06 2009-03-11 Smith International A drill bit having including utility blades which lack cutters
US7987928B2 (en) 2007-10-09 2011-08-02 Pdti Holdings, Llc Injection system and method comprising an impactor motive device
US20090090557A1 (en) * 2007-10-09 2009-04-09 Particle Drilling Technologies, Inc. Injection System And Method
US7980326B2 (en) 2007-11-15 2011-07-19 Pdti Holdings, Llc Method and system for controlling force in a down-hole drilling operation
US20090126994A1 (en) * 2007-11-15 2009-05-21 Tibbitts Gordon A Method And System For Controlling Force In A Down-Hole Drilling Operation
US8353367B2 (en) 2008-02-01 2013-01-15 Gordon Tibbitts Methods of using a particle impact drilling system for removing near-borehole damage, milling objects in a wellbore, under reaming, coring perforating, assisting annular flow, and associated methods
US8353366B2 (en) 2008-02-01 2013-01-15 Gordon Tibbitts Methods of using a particle impact drilling system for removing near-borehole damage, milling objects in a wellbore, under reaming, coring, perforating, assisting annular flow, and associated methods
US8186456B2 (en) 2008-02-01 2012-05-29 Pdti Holdings, Llc Methods of using a particle impact drilling system for removing near-borehole damage, milling objects in a wellbore, under reaming, coring, perforating, assisting annular flow, and associated methods
US8037950B2 (en) 2008-02-01 2011-10-18 Pdti Holdings, Llc Methods of using a particle impact drilling system for removing near-borehole damage, milling objects in a wellbore, under reaming, coring, perforating, assisting annular flow, and associated methods
US20100155063A1 (en) * 2008-12-23 2010-06-24 Pdti Holdings, Llc Particle Drilling System Having Equivalent Circulating Density
US8485279B2 (en) 2009-04-08 2013-07-16 Pdti Holdings, Llc Impactor excavation system having a drill bit discharging in a cross-over pattern
US20100294567A1 (en) * 2009-04-08 2010-11-25 Pdti Holdings, Llc Impactor Excavation System Having A Drill Bit Discharging In A Cross-Over Pattern
EP2948612A4 (en) * 2013-01-25 2017-02-22 Halliburton Energy Services, Inc. Hydraulic activation of mechanically operated bottom hole assembly tool
WO2021216924A1 (en) * 2020-04-24 2021-10-28 Saudi Arabian Oil Company Concealed nozzle drill bit
US11313178B2 (en) * 2020-04-24 2022-04-26 Saudi Arabian Oil Company Concealed nozzle drill bit
US20220389765A1 (en) * 2021-06-08 2022-12-08 Baker Hughes Oilfield Operations Llc Earth-boring tools with through-the-blade fluid ports, and related systems and methods
US11913286B2 (en) * 2021-06-08 2024-02-27 Baker Hughes Oilfield Operations Llc Earth-boring tools with through-the-blade fluid ports, and related methods

Similar Documents

Publication Publication Date Title
US3645346A (en) Erosion drilling
US3645331A (en) Method for sealing nozzles in a drill bit
US3838742A (en) Drill bit for abrasive jet drilling
US4494618A (en) Drill bit with self cleaning nozzle
US3461983A (en) Cutting tool having hard insert in hole surrounded by hard facing
US3112803A (en) Diamond drill bit
US9175520B2 (en) Remotely controlled apparatus for downhole applications, components for such apparatus, remote status indication devices for such apparatus, and related methods
US3688852A (en) Spiral coil nozzle holder
US6142248A (en) Reduced erosion nozzle system and method for the use of drill bits to reduce erosion
US4381825A (en) Drill bit nozzle
CA2150175C (en) Abrasive slurry jetting tool and method
NO169735B (en) COMBINATION DRILL KRONE
US3469642A (en) Hydraulic drilling bit and nozzle
US20100147594A1 (en) Reverse nozzle drill bit
US3727704A (en) Diamond drill bit
US3688853A (en) Method and apparatus for replacing nozzles in erosion bits
US6290006B1 (en) Apparatus and method for a roller bit using collimated jets sweeping separate bottom-hole tracks
US3385386A (en) Hydraulic jet drill bit
US20220034179A1 (en) Downhole transducer assemblies and pressure range control therein
US3384192A (en) Hydraulic jet bit
US3417829A (en) Conical jet bits
US3175629A (en) Jet bit
US8061450B2 (en) Percussion drilling assembly having erosion retarding casing
US3254720A (en) Apparatus for cutting a notch in a subsurface formation
US3508577A (en) Blowout control valve for drilling well