US3713699A - System for eroding solids with a cavitating fluid jet - Google Patents

System for eroding solids with a cavitating fluid jet Download PDF

Info

Publication number
US3713699A
US3713699A US00175150A US3713699DA US3713699A US 3713699 A US3713699 A US 3713699A US 00175150 A US00175150 A US 00175150A US 3713699D A US3713699D A US 3713699DA US 3713699 A US3713699 A US 3713699A
Authority
US
United States
Prior art keywords
jet
fluid
fluid jet
orifice
liquid medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00175150A
Inventor
V Johnson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T-HYDRONAUTICS Inc A CORP OF TX
Tracor Hydronautics Inc
Original Assignee
Hydronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydronautics filed Critical Hydronautics
Application granted granted Critical
Publication of US3713699A publication Critical patent/US3713699A/en
Assigned to T-HYDRONAUTICS, INC., A CORP. OF TX reassignment T-HYDRONAUTICS, INC., A CORP. OF TX ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: HYDRONAUTICS, INCORPORATED A CORP. OF MD
Assigned to TRACOR HYDRONAUTICS reassignment TRACOR HYDRONAUTICS CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: T-HYDRONAUTICS, INC.
Assigned to TORONTO-DOMINION BANK, THE, AS AGENT reassignment TORONTO-DOMINION BANK, THE, AS AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TRACOR, INC.,
Assigned to BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION reassignment BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TRACOR INC.
Assigned to BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION reassignment BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TRACOR, INC.
Assigned to BANK OF AMERICA AS AGENT reassignment BANK OF AMERICA AS AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TORONTO-DOMINION BANK, THE
Assigned to BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION reassignment BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TORONTO-DOMINION BANK, TRACOR, INC.
Assigned to TORONTO-DOMINION BANK, THE reassignment TORONTO-DOMINION BANK, THE SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LITTLEFUSE, INC., TRACOR AEROSPACE, INC., TRACOR APPLIED SCIENCES, INC., TRACOR ATLAS, INC., TRACOR AVIATION, INC., TRACOR CUSTOM PRODUCTS, TRACOR FLIGHT SERVICES, INC., TRACOR FLIGHT SYSTEMS, INC., TRACOR HYDRONAUTICS, INC., TRACOR HYDRO-SERVICES, INC., TRACOR INSTRUMENTS AUSTIN, INC., TRACOR JITCO, INC., TRACOR MARINE, INC., TRACOR NORTHERN, INC., TRACOR XRAY, INC., TRACOR, INC., WESTRONICS, INCORPORATED OF TEXAS
Assigned to BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION, reassignment BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION, SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TRACOR HOLDINGS, INC., TRACOR, INC., AND OTHERS INDICATED ON SCHEDULE SA
Anticipated expiration legal-status Critical
Assigned to TRACOR, INC. reassignment TRACOR, INC. RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION AS COLLATERAL AGENT
Assigned to TRACOR, INC. reassignment TRACOR, INC. RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION
Assigned to TRACOR, INC. reassignment TRACOR, INC. RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION AS COLLATERAL AGENT
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/90Component parts, e.g. arrangement or adaptation of pumps
    • E02F3/92Digging elements, e.g. suction heads
    • E02F3/9206Digging devices using blowing effect only, like jets or propellers
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/18Drilling by liquid or gas jets, with or without entrained pellets
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/18Drilling by liquid or gas jets, with or without entrained pellets
    • E21B7/185Drilling by liquid or gas jets, with or without entrained pellets underwater

Definitions

  • a pressure greater than atmosphere will result under disc 50 and by proper selection of the area of this disc, an upward force supporting the apparatus can be generated. Further, the flexible character of barrier 54 permits operation of the embodiment shown in FIG. 3 over a rough or non-flat surface.
  • liquid medium surrounding the fluid is an annular stream of fluid flowing alongside and at a lower velocity than the fluid jet.
  • a method of drilling a relatively solid substance which comprises forming a high-pressure and velocity water jet, restricting the flow of the water jet to increase its velocity and decrease the pressure below the vapor pressure-of the water to form water vapor cavities therein, whereby the jet will collapse at a predetermined distance from the point of restriction; surrounding the water jet with water of lower velocity than the water jet; and impinging the jet against the solid submirth STATES PATENT @EHQE QERTEEHQATE GEE Patent No. 3, 713, 699 Dated January 30, 1973 1nventor(s) Virgil E. Johnson, Jr.

Abstract

An improved system for advantageously utilizing the destructive forces of cavitation for the erosion of solids which comprises forming a fluid jet by directing a fluid through a restricted orifice at a speed sufficient to form vapor cavities in the fluid jet, surrounding the fluid jet with a liquid medium, and impinging the fluid jet against the solid at a distance from the orifice where the vapor cavities collapse.

Description

ilnited States Patent Johnson, Jr.
SYSTEM FOR ERODING SOLIDS WITH A CAVITATING FLUID JET Virgil E. Johnson, Jr., Gaithersburg, Md.
Hydronautics, Incorporated, Laurel, Md.
Filed: Aug. 26, 1971 Appl. No.: 175,150
Related U.S. Application Data Continuation-impart of Ser. No. 12,449, Feb. 18, 1970, which is a division of Ser. No. 745,611, July 17, 1968, Pat. No. 3,528,704.
Inventor:
Assignee:
U.S. Cl. ..299/l4, 134/1, 175/67, 299/17 Int. Cl ..E2lc 37/06 Field of Search ....299/14, 17; 175/67, 65; 134/1 1 Jan. 30, 1973 [56] References Cited UNITED STATES PATENTS 3,572,839 3/1971 Okabe ..299/17 3,603,410 9/1971 Angona ..l75/65 Primary Examiner-Ernest R. Purser Alt0rney-Marcus B. Finnegan et a1.
[57] ABSTRACT An improved system for advantageously utilizing the destructive forces of cavitation for the erosion of solids which comprises forming a fluid jet by directing a fluid through a restricted orifice at a speed sufficient to form vapor cavities in the fluid jet, surrounding the fluid jet with a liquid medium, and impinging the fluid jet against the solid at a distance from the orifice where the vapor cavities collapse.
12 Claims, 3 Drawing Figures PAIENTEDJAHZiO ms 3.713.699 SHEEI 10F 3 IHVENTOI VIRGIL E. JOHNSON, JR.
ATTORNEYS PATENTEDJANEIO I973 3,713,699 SHEET 2 OF 3 INVENTOI VIRGIL E. JOHNSON,JR.
n Fa /M a, fma azsorz 6631206) ATTORNEYS PAIENTED JAN 30 I973 SHEET 3 [IF 3 FIG. 3
INVENTOI VIRGIL E. JOHNSON, JR.
ATTOI N EYS SYSTEM FOR ERODING SOLIDS WITH A CAVITATING FLUID JET This application is a continuation-in-part of U.S. application Ser. No. 12,449, filed Feb. 18, 1970, which is a division of U.S. application Ser. No. 745,611, filed July 17, 1968, and now U.S. Pat. No. 3,528,704.
This invention relates to an improved system for eroding solids with a cavitating fluid jet. More particularly, this invention relates to an improved system for surrounding the cavitating fluid jet with a liquid medium to increase the cavitation intensity and the destructive force of the fluid jet.
In my U.S. Pat. No. 3,528,704, issued Sept. 15, 1970, there is shown a process and apparatus for drilling by a cavitating fluid jet, in which a stream of water having vapor cavities formed therein is projected against a solid surface in such a manner that the vapor cavities collapse at the point of impact with the solid material. Because the vapor cavities collapse with violence, substantial damage or advantageous erosion can be done to the solid by the jet. The energy required to produce cavitation in the water is relatively modest and can be obtained within a wide range of parameters of pressure, velocity, and the like. Further, the cavitation can be concentrated into a very small area thus providing a very efficient and effective device for an environment such as underground drilling.
When the cavitating fluid jet is used in air, however, as described in my above-mentioned patent, the surrounding atmosphere tends to leak into the jet and replace the water vapor in the cavities which cushions the collapse of the cavities at the point of impact, thereby reducing the shock and destructive force of the jet. Further, the greater the distance between the orifree of the fluid jet and the point of collapse of the cavities the greater effect the surrounding atmosphere has on the intensity of the cavity collapse. This is referred to as venting of the cavitating fluid jet which eventually will change the jet into a plurality of liquid drops in a gaseous medium, rather than a plurality of vapor cavities in a liquid medium. This, of course, would destroy the destructive force of the jet by cavitation although there would be liquid impact damage due to the presence of the liquid drops. Liquid impact erosion, however, as opposed to cavitation erosion is unsuitable from both a time and power viewpoint.
In accordance with the present invention, it has been found that this process of eroding with a cavitating fluid jet can be enhanced and its destructive power increased without an increase in time and power requirements by surrounding the cavitating fluid jet with a liquid medium. Preferably, the surrounding liquid medium is of the same fluid but of lower or negligible velocity when compared to the velocity of the jet. One way for carrying out the improved process of this invention is to submerge the cavitating apparatus underwater to thereby surround the fluid jet with a liquid medium.
By surrounding the fluid jet with a liquid medium such as by forming the fluid jet underwater, venting of the fluid jet to the atmosphere is virtually eliminated, thereby effectively increasing the destructive force of the cavitating fluid jet over a similar jet operated in the atmosphere. Also, because venting is eliminated, the distance between the solid to be eroded and the fluid jet can be increased without danger of the jet breaking up prematurely into liquid drops.
Further, by surrounding the fluid jet with an essentially stationary body of water as contemplated by the present invention, the force of the jet shears the relatively stationary water and creates a high turbulent zone around the periphery of the fluid jet. This creates a multitude of vortices around the periphery of the jet with corresponding low pressures in the center of the vortices. When the pressure in these turbulent vortices decreases below the vapor pressure of the jet, additional vapor cavities will be formed within the vortices, thus increasing the number of vapor cavities in the jet and hence the destructive force of the fluid jet.
It can be seen, therefore, that the present invention as broadly described above provides an improved process for eroding with a cavitating fluid jet and, as more fully described below, new and novel apparatus is also provided for carrying out this improved process.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory but are not restrictive of the invention.
The accompanying drawings which are incorporated in and constitute a part of this application illustrate several embodiments of the invention and together with the description serve to explain the principles of the invention.
Of the drawings:
FIG. 1 is a cross-sectional view showing apparatus for creating a cavitating fluid jet that is submerged in a body of water and illustrating a preferred method for carrying out the present invention;
FIG. 2 is an embodiment of a cavitating fluid jet of the present invention that does not require submersion of the apparatus in a body of water; and
FIG. 3 is an alternative embodiment similar to the device shown in FIG. 2.
Reference will now be made in detail to the preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings.
Cavitation as used in the specification and claims refers to the formation and growth of vapor-filled cavities in a flowing fluid where the local pressure of the fluid is reduced below the vapor pressure of the fluid, thus inducing formation of vapor-filled cavities. When such cavities collapse, enormous pressures are created in the vicinity of the collapse and the erosion of solids relatively high-speed movement between an article and a fluid. Work in the past has been chiefly directed to eliminating the damage caused by cavitation, whereas in the present invention the objective is to utilize the damaging effect of cavitation.
The theory and effect of a cavitating fluid jet and various nozzle arrangements for forming a cavitating fluid jet are more fully described in my prior U.S. Pat.
No. 3,528,704 and the teachings of that patent are herein incorporated by reference.
To illustrate the improvements and advantages realized by the present invention and as shown in the drawings, there is provided cavitating apparatus, generally 10, having a housing 11 and an internal chamber 12. Chamber [2 receives fluid, preferably water, under pressure by connection to a suitable source of fluid through a fitting 14 near one end of the housing. The interior surface 16 of chamber 12 tapers to an outlet opening or restricted orifice 18 at the opposite end of the housing. As shown in FIG. 1, a stem member 20 is positioned within chamber 12 and terminates at a lower surface 22 adjacent orifice 18. Preferably, and as shown diagrammatically in FIG. 1, stem 20 is threadably received within housing so that it can be longitudinally adjusted with respect to orifice 18.
In accordance with the improved system of the present invention, the fluid jet 24 formed by the cavitating apparatus and emerging from orifice 18 is surrounded with a liquid medium. In accordance with a preferred embodiment and as schematically illustrated in FIG. 1, this can be carried out by submerging apparatus 10 in a body of water 26 so that the fluid jet 24 emerging from orifice 18 is surrounded by water that is essentially stationary with respect to the high-velocity jet.
In operation of the apparatus shown in FIG. I, water under pressure is fed to chamber 12 through fitting 14 and exhausted through orifice 18. Because of the area contraction effect of surface 16, the velocity of the water increases as it leaves the housing. As the velocity of the stream increases, generally above about 350 feet per second, the pressure in the lowest pressure region of the stream near stem decreases and because of this reduced pressure, vapor cavities are formed within the water stream.
These vapor cavities will collapse at a certain distance from orifice 18 where the stream velocity is reduced to a point where the stream pressure will no longer permit the presence of these cavities; in other words, at the point where the local pressure of the stream or jet is above the vaporpressure of water. Thus, in use, nozzle 10 is placed a distance cl from a solid 30 to be eroded so that the area of maximum cavity collapse will be located on the surface of the solid.
As described in my aforementioned patent, the location of stem 20 within the orifice 18 causes an increase in the velocity of the stream by reducing its area of exhaust. Additionally and as the water stream passes the surface 22 of stem 20, an evacuated core area 32 is formed that helps to reduce the pressure and increase the formation of vapor cavities in the fluid jet.
Further, pulsing of the fluid stream also adds to the effectiveness of the apparatus and this can be done by valving the supply of water to chamber 12 as described in my aforementioned patent.
In accordance with the present invention, by surrounding the stream with a liquid medium 26, loss of vapor cavities and/or reduction in intensity of cavity collapse due to venting of the jet is substantially avoided. Further, the force of the high-velocity stream shearing the surrounding liquid creates vortices in the stream and increases the number of vapor cavities in the jet. Both of these phenomenon increase the maximum number of cavities collapsing at the surface and thus increase the destructive force of the fluid jet.
Further, it has been found that the distance d or stand off distance between the jet nozzle and the surface to be eroded can be substantially increased without diminishing the effectiveness of the fluid jet. Thus, while in some areas of application it may be possible to place the nozzle as close to the surface to be eroded as desired, it will be appreciated by those skilled in the art that there will be other applications where a larger stand-off distance may be necessary.
The present invention, therefore, not only maximizes formation of vapor cavities in the jet to increase its destructive force but also increases its versatility and efficiency in operation.
The present invention also encompasses new and novel apparatus for accomplishing an eroding function.
There is shown in FIG. 2, for example, cavitating apparatus for forming a fluid jet that need not be submerged underwater during operation but that can be used in the atmosphere while still operating according to the process of the present invention. In the device shown in FIG. 2, the lower end of housing 11 is provided with an internal, annular chamber 40 having an annular discharge opening 42 surrounding orifice 18 of cavitating apparatus 10. A fitting 44 is provided for supplying fluid to chamber 40. The discharge opening 42 of chamber 40 is arranged so that the stream of fluid 46 passing out through annular discharge opening 42 passes alongside and surrounds the fluid jet 24 emerging from orifice 18.
In accordance with the invention and in operation of the device shown in FIG. 2, a fluid, such as water, is supplied to chamber 40 at a much lower driving pressure than the fluid supplied to chamber 12, so that the velocity of annular stream 46 is much lower than the velocity of fluid jet 26 and is in essence relatively stationary compared to the speed of the fluid jet.
It can be seen that by surrounding the fluid jet with an annular stream of water as shown in FIG. 2, venting of the fluid jet is reduced and vortices around the periphery of fluid jet 24 will be created, thereby maximizing the formation of vapor cavities in he jet and increasing the destructive capability of the cavitating apparatus without requiring underwater operation.
FIG. 3- diagrammatically shows an alternative embodiment that also permits use of the cavitating apparatus in the atmosphere while utilizing the advantages of the present invention. In the device shown inFIG. 3, means are provided for trapping and returning spent water from the cavitating fluid jet to the area around fluid jet 24 to provide the relatively stationary fluid medium surrounding the jet emerging from orifice 18. As embodied and as shown in FIG. 3, this means includes an annular disc 50 having an opening 52 aligned with orifice 18 of the jet and radiating outwardly perpendicular to the axis of the fluid jet. Further, a tubular barrier of flexible material 54, such as canvas or the like, is attached to the periphery of disc 50 and extends down, close to the surface 30 to be eroded. Barrier 54 traps spent fluid from jet 24 and maintains it in space 56 between disc 50 and surface 30 so that the jet can be surrounded with a relatively stationary liquid medium.
A pressure greater than atmosphere will result under disc 50 and by proper selection of the area of this disc, an upward force supporting the apparatus can be generated. Further, the flexible character of barrier 54 permits operation of the embodiment shown in FIG. 3 over a rough or non-flat surface.
Thus, it can be seen that each of the nozzles described in FIGS. 1-3 are adapted to exhaust and direct a stream of water in which vapor cavities have been formed against a surface to be eroded while surrounding the jet with a liquid medium in accordance with the present invention. This is accomplished either by operating the cavitating apparatus underwater, as shown in FIG. 1, or by utilizing apparatus of the type exemplified in FIGS. 2 and 3.
As more fully described in my earlier patent, it is to be appreciated that a plurality of jets may be utilized to perform an erosion operation and that suitable apparatus can be provided for traversing the jets across the surface to be eroded in a planned geometric pattern without departing from the scope of the present inventron.
The invention in its broader aspects is not limited to the specific details shown and described, and departures may be made from such details without departing from the scope of the present invention and without sacrificing its chief advantages.
What is claimed is:
14A method for eroding a solid surface with a pressurized fluid comprising the steps of forming a fluid jet by directing a fluid through a restricted orifice to restrict the flow of the fluid jet and increase its velocity and decrease its pressure below the vapor pressure of the fluid to thereby form vapor cavities of the fluid in the jet; surrounding the fluid jet with a liquid medium and impinging the jet against the solid at a distance from the orifice where the pressure of the fluid jet increases above the vapor pressure of the fluid and the vapor cavities collapse.
2. The process of claim 1, wherein the liquid medium surrounding the jet is relatively stationary compared to the velocity of the jet.
3. The process of claim 1, wherein the liquid medium surround the jet is the same fluid as the fluid jet.
4. The process of claim 3, wherein the fluids are water.
5. The process of claim 1, wherein the fluid jet is formed underwater.
6. The process of claim 1, wherein the liquid medium surrounding the fluid jet is spent from the fluid jet.
7. The process of claim 1, wherein the liquid medium surrounding the fluid is an annular stream of fluid flowing alongside and at a lower velocity than the fluid jet.
8. The process of claim 1, which includes the step of pulsing the jet issuing from the orifice.
9. The process of claim 1, wherein the flow of the fluid jet is restricted by passing the jet through an annular orifice to form an evacuated core area beyond the orifice which further reduces the pressure of the fluid and increases the formation of the vapor cavities within the jet.
10. The invention of claim 1, in which the jet is traversed in a fixed geometric pattern with respect to said surface.
11. The invention of claim 10, wherein a plurality of jets is traversed in the same geometric pattern.
12. A method of drilling a relatively solid substance which comprises forming a high-pressure and velocity water jet, restricting the flow of the water jet to increase its velocity and decrease the pressure below the vapor pressure-of the water to form water vapor cavities therein, whereby the jet will collapse at a predetermined distance from the point of restriction; surrounding the water jet with water of lower velocity than the water jet; and impinging the jet against the solid submirth STATES PATENT @EHQE QERTEEHQATE GEE Patent No. 3, 713, 699 Dated January 30, 1973 1nventor(s) Virgil E. Johnson, Jr.
It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Claim 6, column 6, line 12, after "spent" insert "fluid".
Signed and sealed this 29th day of May 1913.
(SEAL) Attest:
EDWARD ,M.FLETCHER,JR. ROBERT GOTTSCHALK v Attesting Officer Commissioner of Patents FORM Po-105O (10- 9) i USCOMM-DC 60376-P69 US. GOVERNMENT PRINTING OFFICE 2 1959 0-35633

Claims (11)

1. A method for eroding a solid surface with a pressurized fluid comprising the stePs of forming a fluid jet by directing a fluid through a restricted orifice to restrict the flow of the fluid jet and increase its velocity and decrease its pressure below the vapor pressure of the fluid to thereby form vapor cavities of the fluid in the jet; surrounding the fluid jet with a liquid medium and impinging the jet against the solid at a distance from the orifice where the pressure of the fluid jet increases above the vapor pressure of the fluid and the vapor cavities collapse.
2. The process of claim 1, wherein the liquid medium surrounding the jet is relatively stationary compared to the velocity of the jet.
3. The process of claim 1, wherein the liquid medium surround the jet is the same fluid as the fluid jet.
4. The process of claim 3, wherein the fluids are water.
5. The process of claim 1, wherein the fluid jet is formed underwater.
6. The process of claim 1, wherein the liquid medium surrounding the fluid jet is spent from the fluid jet.
7. The process of claim 1, wherein the liquid medium surrounding the fluid is an annular stream of fluid flowing alongside and at a lower velocity than the fluid jet.
8. The process of claim 1, which includes the step of pulsing the jet issuing from the orifice.
9. The process of claim 1, wherein the flow of the fluid jet is restricted by passing the jet through an annular orifice to form an evacuated core area beyond the orifice which further reduces the pressure of the fluid and increases the formation of the vapor cavities within the jet.
10. The invention of claim 1, in which the jet is traversed in a fixed geometric pattern with respect to said surface.
11. The invention of claim 10, wherein a plurality of jets is traversed in the same geometric pattern.
US00175150A 1971-08-26 1971-08-26 System for eroding solids with a cavitating fluid jet Expired - Lifetime US3713699A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US17515071A 1971-08-26 1971-08-26

Publications (1)

Publication Number Publication Date
US3713699A true US3713699A (en) 1973-01-30

Family

ID=22639128

Family Applications (1)

Application Number Title Priority Date Filing Date
US00175150A Expired - Lifetime US3713699A (en) 1971-08-26 1971-08-26 System for eroding solids with a cavitating fluid jet

Country Status (11)

Country Link
US (1) US3713699A (en)
JP (1) JPS5143639B2 (en)
AU (1) AU467321B2 (en)
BR (1) BR7205853D0 (en)
CA (1) CA967940A (en)
DE (1) DE2241946C3 (en)
FR (1) FR2154441B1 (en)
GB (1) GB1379942A (en)
IT (1) IT964282B (en)
NL (1) NL164637C (en)
NO (1) NO134499C (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4127332A (en) * 1976-11-19 1978-11-28 Daedalean Associates, Inc. Homogenizing method and apparatus
US4185706A (en) * 1978-11-17 1980-01-29 Smith International, Inc. Rock bit with cavitating jet nozzles
US4193635A (en) * 1978-04-07 1980-03-18 Hochrein Ambrose A Jr Controlled cavitation erosion process and system
US4262757A (en) * 1978-08-04 1981-04-21 Hydronautics, Incorporated Cavitating liquid jet assisted drill bit and method for deep-hole drilling
EP0062111A2 (en) * 1980-12-12 1982-10-13 Hydronautics, Incorporated Enhancing liquid jet erosion
US4389071A (en) * 1980-12-12 1983-06-21 Hydronautics, Inc. Enhancing liquid jet erosion
US4508577A (en) * 1983-04-29 1985-04-02 Tracor Hydronautics, Inc. Fluid jet apparatus and method for cleaning tubular components
US4534427A (en) * 1983-07-25 1985-08-13 Wang Fun Den Abrasive containing fluid jet drilling apparatus and process
US4806277A (en) * 1986-05-19 1989-02-21 Hitachi Ltd. Decontaminating solid surfaces
US5086974A (en) * 1990-12-18 1992-02-11 Nlb Corp. Cavitating jet nozzle
US5125582A (en) * 1990-08-31 1992-06-30 Halliburton Company Surge enhanced cavitating jet
US5154347A (en) * 1991-02-05 1992-10-13 National Research Council Canada Ultrasonically generated cavitating or interrupted jet
US5217163A (en) * 1990-12-18 1993-06-08 Nlb Corp. Rotating cavitating jet nozzle
US5632349A (en) * 1993-10-08 1997-05-27 Dove; Norval R. Vortex drill bit
US5785258A (en) * 1993-10-08 1998-07-28 Vortexx Group Incorporated Method and apparatus for conditioning fluid flow
US5897062A (en) * 1995-10-20 1999-04-27 Hitachi, Ltd. Fluid jet nozzle and stress improving treatment method using the nozzle
US5941461A (en) * 1997-09-29 1999-08-24 Vortexx Group Incorporated Nozzle assembly and method for enhancing fluid entrainment
US5992763A (en) * 1997-08-06 1999-11-30 Vortexx Group Incorporated Nozzle and method for enhancing fluid entrainment
GB2391881A (en) * 2002-08-16 2004-02-18 Michael Eugene Kavanagh Mining hydrothermal vents
US20090227185A1 (en) * 2008-03-10 2009-09-10 David Archibold Summers Method and apparatus for jet-assisted drilling or cutting
CN102854078A (en) * 2012-09-18 2013-01-02 哈尔滨电机厂有限责任公司 Abrasion testing machine
WO2018018662A1 (en) * 2016-07-26 2018-02-01 江苏大学 Method and device for cavitation accumulation processing

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8104796A (en) * 1981-10-22 1983-05-16 Stichting Speurwerk Baggertech METHOD AND APPARATUS FOR DREDGING ROCK.
JPH089160B2 (en) * 1987-01-19 1996-01-31 株式会社芝浦製作所 Bubble jet deburring method and apparatus
GB0011985D0 (en) * 2000-05-19 2000-07-05 Kabling International Ltd Improvements in/or relating to cable burial apparatus
DE10314447A1 (en) * 2003-03-31 2004-10-14 Robert Bosch Gmbh Method of manufacturing a structured or stochastic microstructured surface of a component e.g. hydraulic drive or fuel injection system of vehicle, involves forming recesses in the surface by forced cavitation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3572839A (en) * 1968-08-28 1971-03-30 Toa Kowan Kogyo Kk Process for excavation of hard underwater beds
US3603410A (en) * 1968-12-05 1971-09-07 Mobil Oil Corp Method and apparatus for cavitational drilling utilizing periodically reduced hydrostatic pressure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3572839A (en) * 1968-08-28 1971-03-30 Toa Kowan Kogyo Kk Process for excavation of hard underwater beds
US3603410A (en) * 1968-12-05 1971-09-07 Mobil Oil Corp Method and apparatus for cavitational drilling utilizing periodically reduced hydrostatic pressure

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4127332A (en) * 1976-11-19 1978-11-28 Daedalean Associates, Inc. Homogenizing method and apparatus
US4193635A (en) * 1978-04-07 1980-03-18 Hochrein Ambrose A Jr Controlled cavitation erosion process and system
US4262757A (en) * 1978-08-04 1981-04-21 Hydronautics, Incorporated Cavitating liquid jet assisted drill bit and method for deep-hole drilling
US4185706A (en) * 1978-11-17 1980-01-29 Smith International, Inc. Rock bit with cavitating jet nozzles
US4474251A (en) * 1980-12-12 1984-10-02 Hydronautics, Incorporated Enhancing liquid jet erosion
US4389071A (en) * 1980-12-12 1983-06-21 Hydronautics, Inc. Enhancing liquid jet erosion
EP0062111A3 (en) * 1980-12-12 1985-08-21 Hydronautics, Incorporated Enhancing liquid jet erosion
US4681264A (en) * 1980-12-12 1987-07-21 Hydronautics, Incorporated Enhancing liquid jet erosion
EP0062111A2 (en) * 1980-12-12 1982-10-13 Hydronautics, Incorporated Enhancing liquid jet erosion
US4508577A (en) * 1983-04-29 1985-04-02 Tracor Hydronautics, Inc. Fluid jet apparatus and method for cleaning tubular components
US4534427A (en) * 1983-07-25 1985-08-13 Wang Fun Den Abrasive containing fluid jet drilling apparatus and process
US4806277A (en) * 1986-05-19 1989-02-21 Hitachi Ltd. Decontaminating solid surfaces
US5125582A (en) * 1990-08-31 1992-06-30 Halliburton Company Surge enhanced cavitating jet
US5217163A (en) * 1990-12-18 1993-06-08 Nlb Corp. Rotating cavitating jet nozzle
US5086974A (en) * 1990-12-18 1992-02-11 Nlb Corp. Cavitating jet nozzle
US5154347A (en) * 1991-02-05 1992-10-13 National Research Council Canada Ultrasonically generated cavitating or interrupted jet
US5632349A (en) * 1993-10-08 1997-05-27 Dove; Norval R. Vortex drill bit
US5653298A (en) * 1993-10-08 1997-08-05 Vortexx Group, Inc. Vortex method
US5785258A (en) * 1993-10-08 1998-07-28 Vortexx Group Incorporated Method and apparatus for conditioning fluid flow
US5921476A (en) * 1993-10-08 1999-07-13 Vortexx Group Incorporated Method and apparatus for conditioning fluid flow
US6065683A (en) * 1993-10-08 2000-05-23 Vortexx Group, Inc. Method and apparatus for conditioning fluid flow
US5897062A (en) * 1995-10-20 1999-04-27 Hitachi, Ltd. Fluid jet nozzle and stress improving treatment method using the nozzle
US5992763A (en) * 1997-08-06 1999-11-30 Vortexx Group Incorporated Nozzle and method for enhancing fluid entrainment
US5941461A (en) * 1997-09-29 1999-08-24 Vortexx Group Incorporated Nozzle assembly and method for enhancing fluid entrainment
GB2391881A (en) * 2002-08-16 2004-02-18 Michael Eugene Kavanagh Mining hydrothermal vents
GB2391881B (en) * 2002-08-16 2005-10-26 Michael Eugene Kavanagh Extraction of constituents of seawater and sediments from the oceans
US20090227185A1 (en) * 2008-03-10 2009-09-10 David Archibold Summers Method and apparatus for jet-assisted drilling or cutting
US8257147B2 (en) 2008-03-10 2012-09-04 Regency Technologies, Llc Method and apparatus for jet-assisted drilling or cutting
CN102854078A (en) * 2012-09-18 2013-01-02 哈尔滨电机厂有限责任公司 Abrasion testing machine
WO2018018662A1 (en) * 2016-07-26 2018-02-01 江苏大学 Method and device for cavitation accumulation processing

Also Published As

Publication number Publication date
FR2154441A1 (en) 1973-05-11
FR2154441B1 (en) 1977-08-05
JPS4832287A (en) 1973-04-27
NO134499C (en) 1976-10-20
BR7205853D0 (en) 1973-06-28
NL164637B (en) 1980-08-15
JPS5143639B2 (en) 1976-11-24
NO134499B (en) 1976-07-12
DE2241946C3 (en) 1974-05-16
IT964282B (en) 1974-01-21
AU467321B2 (en) 1975-11-27
CA967940A (en) 1975-05-20
DE2241946A1 (en) 1973-03-01
GB1379942A (en) 1975-01-08
DE2241946B2 (en) 1973-10-11
AU4552672A (en) 1974-02-14
NL7211568A (en) 1973-02-28
NL164637C (en) 1981-01-15

Similar Documents

Publication Publication Date Title
US3713699A (en) System for eroding solids with a cavitating fluid jet
US3807632A (en) System for eroding solids with a cavitating fluid jet
US3528704A (en) Process for drilling by a cavitating fluid jet
CA1217610A (en) Fluid jet apparatus and method for cleaning tubular components
US4391339A (en) Cavitating liquid jet assisted drill bit and method for deep-hole drilling
US4342425A (en) Cavitation nozzle assembly
US4262757A (en) Cavitating liquid jet assisted drill bit and method for deep-hole drilling
US4193635A (en) Controlled cavitation erosion process and system
US4681264A (en) Enhancing liquid jet erosion
US20190314866A1 (en) Device and Method for Hydrodynamic Surface Cleaning Based on Micro-Hydropercussion Effect
GB1010705A (en) Method of and apparatus for removing solid propellant from rocket casings
KR860004267A (en) Method and apparatus for hammering and compressing steam generator tube sets on a tube plate
JPS58117999A (en) Extraneous-matter removing device for heat exchanger, etc. and its method
US5056718A (en) Jetting nozzle
US4610321A (en) Cavitating jet device
US5186389A (en) Spray tube ultrasonic washing apparatus
US3609916A (en) Apparatus for treating surfaces of ships' hulls or the like
CA2035421A1 (en) Method and apparatus for removing foreign matter from heat exchanger tubesheets
JPS617058A (en) Cleaning method of casting
US3476194A (en) Flame jet drilling
CA2074247A1 (en) Cleaning device
JPS6362342B2 (en)
WO2006043911A1 (en) Cavitation nozzle
CA1090379A (en) Method and device for breaking hard compact material such as rock
US4103971A (en) Method for breaking rock by directing high velocity jet into pre-drilled bore

Legal Events

Date Code Title Description
AS Assignment

Owner name: T-HYDRONAUTICS, INC., A CORP. OF TX, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HYDRONAUTICS, INCORPORATED A CORP. OF MD;REEL/FRAME:004134/0357

Effective date: 19830509

Owner name: T-HYDRONAUTICS, INC., 6500 TRACOR LANE AUSTIN, TX

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:HYDRONAUTICS, INCORPORATED A CORP. OF MD;REEL/FRAME:004134/0357

Effective date: 19830509

AS Assignment

Owner name: TRACOR HYDRONAUTICS

Free format text: CHANGE OF NAME;ASSIGNOR:T-HYDRONAUTICS, INC.;REEL/FRAME:004186/0077

Effective date: 19830429

STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)

AS Assignment

Owner name: TORONTO-DOMINION BANK, THE, AS AGENT

Free format text: SECURITY INTEREST;ASSIGNOR:TRACOR, INC.,;REEL/FRAME:004810/0246

Effective date: 19871216

AS Assignment

Owner name: BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIA

Free format text: SECURITY INTEREST;ASSIGNOR:TRACOR, INC.;REEL/FRAME:005217/0247

Effective date: 19880801

Owner name: BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIA

Free format text: SECURITY INTEREST;ASSIGNORS:TORONTO-DOMINION BANK;TRACOR, INC.;REEL/FRAME:005224/0276

Effective date: 19880801

Owner name: TORONTO-DOMINION BANK, THE

Free format text: SECURITY INTEREST;ASSIGNORS:TRACOR, INC.;LITTLEFUSE, INC.;TRACOR AEROSPACE, INC.;AND OTHERS;REEL/FRAME:005234/0127

Effective date: 19880801

Owner name: BANK OF AMERICA AS AGENT

Free format text: SECURITY INTEREST;ASSIGNOR:TORONTO-DOMINION BANK, THE;REEL/FRAME:005197/0122

Effective date: 19880801

Owner name: BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIA

Free format text: SECURITY INTEREST;ASSIGNOR:TRACOR INC.;REEL/FRAME:005217/0224

Effective date: 19880801

AS Assignment

Owner name: BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIA

Free format text: SECURITY INTEREST;ASSIGNOR:TRACOR HOLDINGS, INC., TRACOR, INC., AND OTHERS INDICATED ON SCHEDULE SA;REEL/FRAME:005317/0726

Effective date: 19891030

AS Assignment

Owner name: TRACOR, INC.

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION AS COLLATERAL AGENT;REEL/FRAME:005957/0562

Effective date: 19911220

Owner name: TRACOR, INC.

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION AS COLLATERAL AGENT;REEL/FRAME:005957/0542

Effective date: 19911227

Owner name: TRACOR, INC.

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION;REEL/FRAME:005953/0942

Effective date: 19911227