WO2009027237A2 - Kit zur bereitstellung von färbemitteln - Google Patents

Kit zur bereitstellung von färbemitteln Download PDF

Info

Publication number
WO2009027237A2
WO2009027237A2 PCT/EP2008/060682 EP2008060682W WO2009027237A2 WO 2009027237 A2 WO2009027237 A2 WO 2009027237A2 EP 2008060682 W EP2008060682 W EP 2008060682W WO 2009027237 A2 WO2009027237 A2 WO 2009027237A2
Authority
WO
WIPO (PCT)
Prior art keywords
group
agent
formyl
amino
dihydro
Prior art date
Application number
PCT/EP2008/060682
Other languages
German (de)
English (en)
French (fr)
Other versions
WO2009027237A3 (de
Inventor
Doris Oberkobusch
Wibke Gross
Melanie Moch
Original Assignee
Henkel Ag & Co. Kgaa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Ag & Co. Kgaa filed Critical Henkel Ag & Co. Kgaa
Publication of WO2009027237A2 publication Critical patent/WO2009027237A2/de
Publication of WO2009027237A3 publication Critical patent/WO2009027237A3/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/4906Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with one nitrogen as the only hetero atom
    • A61K8/4913Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with one nitrogen as the only hetero atom having five membered rings, e.g. pyrrolidone carboxylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/4906Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with one nitrogen as the only hetero atom
    • A61K8/4926Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with one nitrogen as the only hetero atom having six membered rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/494Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with more than one nitrogen as the only hetero atom
    • A61K8/4953Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with more than one nitrogen as the only hetero atom containing pyrimidine ring derivatives, e.g. minoxidil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/4973Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with oxygen as the only hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/4986Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with sulfur as the only hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/10Preparations for permanently dyeing the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/88Two- or multipart kits

Definitions

  • the present invention relates to a kit for dyeing keratin-containing fibers, in particular human hair, which comprises at least two special cosmetic agents A and B, as well as the use of this hair dyeing kit and a corresponding dyeing method.
  • the agent A contains in this case at least one reactive carbonyl compound and at least one CH-acidic compound.
  • the agent B contains in a liquid cosmetic carrier at least one alkalizing agent and has a pH greater than 7.
  • a method for coloring keratin-containing fibers, in which this kit is used, is also the subject of the invention.
  • oxidation colorants For permanent, intensive colorations with corresponding fastness properties, so-called oxidation colorants are used. Such colorants usually contain oxidation dye precursors, so-called developer components and coupler components.
  • the developer components form the actual dyes under the influence of oxidizing agents or of atmospheric oxygen with one another or with coupling with one or more coupler components.
  • the oxidation dyes are characterized by excellent, long-lasting dyeing results. For naturally acting dyeings but usually a mixture of a larger number of oxidation dye precursors must be used; In many cases, direct dyes are still used for shading.
  • the developer components used are usually primary aromatic amines having a further, in the para or ortho position, free or substituted hydroxy or amino group, heterocyclic hydrazones, diaminopyrazole derivatives and 2,4,5,6-tetraaminopyrimidine and its derivatives.
  • coupler components m-phenylenediamine derivatives, naphthols, pyridine derivatives, resorcinol and resorcinol derivatives, pyrazolones and m-aminophenols are generally used.
  • Particularly suitable as coupler substances are 1-naphthol, 1,5-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 5-amino-2-naphthylphenol, m-aminophenol, resorcinol, resorcinomonomethyl ether, m-phenylenediamine, 1-phenyl 3-methyl-pyrazol-5-one, 2,4-di-chloro-3-aminophenol, 1, 3-bis (2,4-diaminophenoxy) -propane, 2-amino-3-hydroxypyridine, 4-chlororesorcinol , 2-chloro-6-methyl-3-anninophenol, 2-methylres
  • dyeing or tinting agents which contain so-called direct drawers as a coloring component. These are dye molecules that attach directly to the substrate and do not require an oxidative process to form the paint. These dyes include, for example, the henna already known from antiquity for coloring body and hair. These dyeings are generally much more sensitive to shampooing than the oxidative dyeings, so that a much more rapid undesirable change in shade or even a visible, homogeneous color loss occurs much faster.
  • a first class of oxo dye precursors are compounds having at least one reactive carbonyl group. This first class is called a component (Oxo1).
  • a second class of oxo dye precursors form CH-acidic compounds and compounds having primary or secondary amino groups or hydroxy groups, which in turn are selected from compounds of the group formed from primary or secondary aromatic amines, nitrogen-containing heterocyclic compounds and aromatic hydroxy compounds. This second class is called a component (Oxo2).
  • the aforementioned components (oxo1) and (oxo2) are generally not themselves dyes, and therefore are not in themselves suitable for coloring keratin-containing fibers. In In combination, they form dyes in a non-oxidative process called oxo dyeing. The resulting dyeings have partially color fastness on the keratin-containing fiber, which are comparable to those of the oxidation dyeing.
  • the Nuancenspektrum achievable with the gentle oxo staining is very broad and the color obtained often has an acceptable brilliance and color depth.
  • the oxo staining method can be readily combined with the oxidative staining system.
  • A1 describes a dyeing agent which is prepared by mixing a component (A1) containing an enamine or its acid addition salt and a component (A2) containing a carbonyl compound and a primary amine.
  • the component A1 has an acidic pH, but the component A2 has an alkaline pH.
  • Both the reactive carbonyl compounds of the component oxo 1 and the CH-acidic compounds of the component oxo 2 have only limited stability in solution, so that the compounds often decompose over the course of a few weeks to months. The resulting drop in color intensity when using the colorant is not accepted by the consumer.
  • the object of the present invention is therefore to provide a kit for dyeing hair in the context of the oxo dyeing, wherein both the carbonyl compound (oxo 1) and the CH-acidic compound (oxo 2) are stabilized, so that even after long Storage periods of colorations of high color intensity can be obtained.
  • a first subject of the invention is therefore a kit (packaging unit) for dyeing keratin-containing fibers, in particular human hair, comprising at least one agent A and at least one agent B, characterized in that the agent A at least one CH-acidic compound and at least one reactive
  • Carbonyl compound containing the agent A is powdered, granulated or in the form of a molded article and the agent B in a liquid cosmetic carrier contains at least one alkalizing agent and has a pH greater than 7, with the proviso that the agents A and B are each separated pre-assembled.
  • Keratin fibers are wool, furs, feathers and especially human hair to understand.
  • the dyestuffs of the invention may also be used for dyeing other natural fibers, such as cotton, jute, sisal, linen or silk, modified natural fibers, such as regenerated cellulose, nitro, alkyl or hydroxyalkyl or acetylcellulose and synthetic fibers, such as polyamide, Polyacrylonitrile, Polyurtehan and polyester fibers are used.
  • Packaged separately means in the sense of the invention that the agents concerned are each assembled in a separate container.
  • a container can serve different types of packaging, such as films, bags, bottles, cans, tubes, jars, sachets, aerosol containers.
  • a chamber of a multi-chamber container is considered a container.
  • the CH-acidic compounds and the reactive carbonyl compounds of the agent A are formulated separately and are present in at least one agent A1 and at least one agent A2, with the provisos that the agent A1 is at least one CH-acid Compound contains, wherein the agent A1 in powder form, granulated or is present as a shaped body, the agent A2 contains at least one reactive carbonyl compound, wherein the agent A2 is in powder form, granulated or present as a shaped body.
  • the agents A1 are thus free of reactive carbonyl compounds and the agents A2 free of CH-acidic compounds.
  • the agent A may consist of 100% by weight of at least one CH-acidic compound and at least one reactive carbonyl compound. However, it is preferred to embed the active ingredients of the agent A in a cosmetic carrier. The additional ingredients embedded in the cosmetic carrier as well as the substances of the cosmetic carrier itself will be mentioned later.
  • the agent A - or the agent A2 - contains at least one reactive carbonyl compound.
  • Reactive carbonyl compounds have in the context of the invention at least one carbonyl group as a reactive group which reacts with the CH-acidic component to form a covalent bond.
  • Preferred reactive carbonyl compounds are selected from compounds which carry at least one formyl group and / or at least one keto group, in particular at least one formyl group.
  • those compounds according to the invention are also suitable as component (Oxo1) in which the reactive carbonyl group is derivatized or masked such that the reactivity of the carbon atom of the derivatized carbonyl group with respect to the component (Oxo2) is always present.
  • These derivatives are preferably addition compounds a) of amines and their derivatives to form imines or oximes as addition compound b) of alcohols to form acetals or ketals as addition compound c) of water to form hydrates as addition compound (component (Oxo1) is derived in this case c) from an aldehyde) to the carbon atom of the carbonyl group of the reactive carbonyl compound.
  • Preferred among the reactive carbonyl compounds of the agent A are compounds selected from compounds of the following group: benzaldehyde and its derivatives, naphthaldehyde and its derivatives, cinnamaldehyde and its derivatives, 2-formylmethylene-1,3,3-trimethylindoline (Fischer's aldehyde or tribasic aldehyde) , 2-indolaldehyde, 3-indolaldehyde, 1-methylindole-3-aldehyde, 2-methylindole-3-aldehyde, 2- (1 ', 3', 3'-trimethyl-2-indolinylidene) -acetaldehyde, 1-methylpyrrole 2-aldehyde, pyridoxal, antipyrin-4-aldehyde, furfural, 5-nitrofurfural, chromon-3-aldehyde, 3- (5'-nitro-2'-furyl) acrolein, 3- (2'
  • the agent A - or the agent A1 - contains at least one CH-acidic compound.
  • CH-acidic compounds are generally considered those compounds which carry a bound to an aliphatic carbon atom hydrogen atom, wherein due to electron-withdrawing substituents, activation of the corresponding carbon-hydrogen bond is effected.
  • Said hydrogen atom can be abstracted with the aid of a base.
  • the agent A preferably contains at least one CH-acidic compound selected from at least one compound of the formula (CH-1) and / or from at least one compound of the formula (CH-2),
  • R 16 represents a linear or cyclic (C 1 to C 6 ) alkyl group, a (C 2 to C 6 ) alkenyl group, an optionally substituted aryl group, an optionally substituted heteroaryl group, an aryl (C 1 to C 6 ) alkyl group , a (C 1 to C 6 ) hydroxyalkyl group, a (C 2 to C 6 ) polyhydroxyalkyl group, a (C 1 to C 6 ) alkoxy (C 1 to C 6 ) alkyl group, a group R'R M N- ( CH 2 ) m -, wherein R 1 and R 11 are each independently a hydrogen atom, a (Ci to C 4 ) alkyl group, a (Ci to C 4 ) hydroxyalkyl group or an aryl (Ci to C 6 ) alkyl group in which R 1 and R 11 together with the nitrogen atom can form a 5-, 6- or 7-membered ring and m stands for
  • X ' is a physiologically acceptable anion
  • the cycle of the formula (CH-1) represents all ring structures which may additionally contain other heteroatoms such as nitrogen, oxygen or sulfur and may further carry fused ring structures, all of these ring structures being able to carry additional substituents,
  • Het is an optionally substituted heteroaromatic
  • X 1 represents a direct bond or a carbonyl group.
  • R 8 and R 9 are each independently a linear or cyclic (C 1 to C 6 ) alkyl group, a (C 2 to C 6 ) alkenyl group, an optionally substituted aryl group, an optionally substituted heteroaryl group, an aryl (i.e.
  • R 1 and R 11 independently represent a hydrogen atom, a (C 1 to C 4 ) alkyl group, a (C 1 to C 4 ) hydroxyalkyl group or an aryl- (C 1 -C 4 ) -alkyl group, where R 1 and R 11 together with the nitrogen atom can form a 5-, 6- or 7-membered ring and m is a number 2, 3, 4, 5 or 6,
  • R 10 and R 12 independently of one another represent a hydrogen atom or a C 1 -C 6 -alkyl group, where at least one of the radicals R 10 and R 12 denotes a (C 1 to C 6 ) -alkyl group,
  • R 11 represents a hydrogen atom, a (C 1 to C 6) alkyl group, a (C 1 -C 6) - hydroxyalkyl group, a (C 2 -C 6) -polyhydroxyalkyl group, a (C 1 to C 6) - Alkoxy group, a (C 1 to C 6 ) -hydroxyalkoxy group, a group R m R IV N- (CH 2 ) q -, in which R m and R IV independently of one another represent a hydrogen atom, a (C 1 to C 6 ) - hydroxyalkyl alkyl group or an aryl (C- ⁇ -C 6) and q is a number 1, 2, 3, 4, 5 or 6, wherein the radical R 11 together are - alkyl group, a (C 1 to C 6) with one of R 10 or R 12 may form a 5- or 6-membered aromatic ring optionally substituted with a halogen atom, a (C 1 to C 6 ) alkyl
  • Y represents an oxygen atom, a sulfur atom or a group NR V ", wherein R v" stands for a hydrogen atom, an aryl group, a heteroaryl group, a (C 1 to C 6) alkyl group or an aryl (C- ⁇ to C 6 ) alkyl group,
  • X ' is a physiologically acceptable anion.
  • At least one group R 10 or R 12 according to formula (CH-3) necessarily stands for a (C 1 to C 6 ) -alkyl group.
  • This alkyl group preferably carries at least two hydrogen atoms on its ⁇ -carbon atom.
  • Particularly preferred alkyl groups are the methyl, ethyl, propyl, n-butyl, iso-butyl, n-pentyl, neo-pentyl, n-hexyl group.
  • R 10 and R 12 independently of one another represent hydrogen or a methyl group, where at least one group R 10 or R 12 denotes a methyl group.
  • Y of the formula (CH-3) is an oxygen or a sulfur atom, more preferably an oxygen atom.
  • the radical R 8 of the formula (CH-3) is preferably selected from a (C 1 to C 6 ) -alkyl group (particularly preferably a methyl group), a (C 2 to C 6 ) -alkenyl group (in particular an allyl group), a (C 2 to C 6 ) hydroxyalkyl group (especially a 2-hydroxyethyl group) or an optionally substituted benzyl group.
  • R 11 of the formula (CH-3) is preferably a hydrogen atom.
  • radicals R 9 , R 10 and R 12 is a methyl group
  • the radical R 11 is a hydrogen atom
  • Y is an oxygen or sulfur atom
  • the radical R 8 is selected from a ( C 1 to C 6 ) alkyl group (particularly preferably a methyl group), a (C 2 to C 6 ) alkenyl group (especially an allyl group), a (C 2 to C 6 ) hydroxyalkyl group (especially a 2-hydroxyethyl group) or a optionally substituted benzyl group.
  • the C, H-acidic compound of the formula (CH-1) and / or the formula (CH-2) contained in the agent A comprises a compound selected from at least one compound of the group consisting of (2-furoyl) -acetonitrile, 2- (5-bromo-2-furoyl) -acetonitrile, 3- (2,5-dimethyl-3-furyl) -3-oxopropanitrile, 2- (2-thenoyl) -acetonitrile, 2- (3-thenoyl) acetonitrile, 2- (5-fluoro-2-thenoyl) -acetonitrile, 2- (5-chloro-2-thenoyl) -acetonitrile, 2- (5-bromo-2-thenoyl) - acetonitrile, 2- (5-methyl-2-thenoyl) -acetonitrile, 2- (2,5-dimethylpyrrol-3-oyl) -
  • the reactive carbonyl compounds of the agent A are preferably used in an amount of 0.03 to 65.00 mmol, based on 100 g of the agent A.
  • the CH-acidic compounds of the formula (CH-1) and / or the formula (CH-2) in the agent A are preferably used in an amount of 0.03 to 65.00 mmol, based on 100 g of the agent A. , The use of 1, 00 to 30.00 mmol, based on 100 g of the agent A, is particularly preferred.
  • the agent A is in powder form, granulated or in the form of a shaped body.
  • a powdery agent A has a preferred average particle size of 0.0001 to 500 microns. in particular from 0.0001 to 50 ⁇ m, more preferably from 0.05 to 30 ⁇ m.
  • Granules according to the invention are understood to mean granular particles. These granular particles are flowable.
  • Granules can be prepared by wet granulation, by dry granulation or compaction and by melt solidification granulation. The most common granulation technique is wet granulation, since this technique is subject to the fewest restrictions and leads most safely to granules with favorable properties.
  • the wet granulation is carried out by moistening the powder mixtures with solvents and / or solvent mixtures and / or solutions of binders and / or solutions of adhesives and is preferably carried out in mixers, fluidized beds or spray towers, said mixer can be equipped, for example, with stirring and kneading tools. However, combinations of fluidized bed (s) and mixer (s) or combinations of different mixers can also be used for the granulation.
  • the granulation takes place under the action of low to high shear forces.
  • these shaped bodies according to the invention may have any geometric shape, such as concave, convex, biconcave, biconvex, cubic, tetragonal, orthorhombic, cylindrical, spherical, cylinder segment, disk-shaped, tetrahedral, dodecahedral, octahedral, conical, pyramidal, ellipsoidal, pentagonal, pentagonal, octagonal, prismatic and rhombohedral forms. Even completely irregular surfaces such as arrow or animal shapes, trees, clouds, etc. can be realized.
  • the bar or bar shape, cubes, cuboids and corresponding space elements with flat side surfaces and in particular cylindrical configurations with a circular or oval cross-section and shaped bodies with spherical geometry are inventively preferred.
  • Particularly preferred are shaped bodies in the form of spherical geometry.
  • the cylindrical configuration detects the presentation form of the tablet up to compact cylinder pieces with a height to diameter ratio greater than 1. If the base molding has corners and edges, these are preferably rounded. As additional optical differentiation, an embodiment with rounded corners and chamfered edges is preferred.
  • the spherical design comprises, in addition to a spherical shape, a hybrid of spherical and cylindrical shape, wherein each base of the cylinder is capped with a hemisphere.
  • the hemispheres preferably have a radius of about 4 mm and the entire molded body of this embodiment has a length of 12-14 mm.
  • An inventive shaped body with a spherical configuration can be produced by the known methods. It is possible to produce the moldings by extrusion of a premix with subsequent shaping, as described in more detail, for example, in WO-A-91/02047, which is incorporated herein by reference.
  • the portioned compacts may be formed in each case as separate individual elements which corresponds to the predetermined dosage amount of the CH-acidic compounds or the reactive carbonyl compounds.
  • the formation of the portioned compacts as tablets in cylindrical or cuboidal shape may be appropriate, with a diameter / height ratio in the range of about 0.5: 2 to 2: 0.5 is preferred.
  • Commercially available hydraulic presses, eccentric presses or rotary presses are suitable devices, in particular for producing such compacts.
  • Another possible spatial form of the shaped body according to the invention has a rectangular base area, wherein the height of the shaped body is smaller than the smaller rectangle side of the base area. Rounded corners are preferred in this offer form.
  • Another shaped body that can be produced has a plate-like or tabular structure with alternating thick long and thin short segments, so that individual segments of this "bar" at the predetermined breaking points, which are the short thin segments, broken and portioned to the Use can come.
  • This principle of the "rectangular" shaped body can also be realized in other geometric shapes, for example vertical triangles, which are connected together only on one of their sides alongside one another.
  • the shaped bodies according to the invention contain at least one further component in addition to the components oxo1 and oxo2, in a further embodiment it may be advantageous not to compress the various components exclusively to form a uniform tablet.
  • moldings are obtained which comprise a plurality of layers, So at least two layers. It is also possible that these different layers have different dissolution rates. This can result in advantageous performance properties of the molded body. For example, if components are included in the moldings that interact negatively, it is possible to incorporate one component in the faster soluble layer and incorporate the other component into a slower soluble layer so that the components do not already during the dissolution process react with each other.
  • the layer structure of the moldings can be carried out either in a staggered manner, whereby a dissolving process of the inner layer (s) at the edges of the shaped body already takes place when the outer layers have not yet been completely dissolved.
  • the stacking axis can be arranged as desired to the tablet axis.
  • the stacking axis can therefore be parallel or perpendicular to the height of the cylinder, for example, in the case of a cylindrical tablet.
  • the inner layer (s) may also be preferred if complete envelopment of the inner layer (s) is achieved by the respectively further outer layer (s), which leads to a prevention of premature dissolution of constituents of the inner layer (FIG. en).
  • moldings may be preferred in which e.g. the layer (C) is completely covered by the layer (B) and this in turn is completely enveloped by the layer (A).
  • Similar effects can also be achieved by coating ("coating") individual components of the composition to be pressed or of the entire molding.
  • the bodies to be coated can be sprayed, for example, with aqueous solutions or emulsions, or obtained by the process of melt coating a coating.
  • a coating of hydroxypropylmethylcellulose, cellulose, PEG stearates and colored pigments is suitable as being suitable according to the invention.
  • the (trough) shaped bodies produced according to the invention can be provided, as described above, in whole or in part with a coating. Processes in which a subsequent treatment in the application of a coating layer to the shaped body surface (s) in which the filled well (s) are located or in the application of a coating layer to the entire shaped body are preferred according to the invention.
  • a molded body according to the invention has a preferred breaking hardness of 30-100 N, particularly preferably 40-80 N, very particularly preferably 50-60 N (measured according to European Pharmacopoeia 1997, 3rd edition, ISBN 3-7692-2186-9, 2.9.8 Breaking strength of tablets ", page 143-144 with a Schleuniger 6D tablet hardness tester).
  • moldings according to the invention can consist of a shaped article which is described by the term "basic shaped article” and is produced by known tableting processes and which has a depression.
  • the base molding is first prepared and the further compressed part in a further step on or in this base molding on or introduced.
  • the resulting product is hereinafter referred to by the generic term "tray molding” or "depression tablet”.
  • the basic shaped body according to the invention can in principle assume all realizable spatial forms. Particularly preferred are the spatial forms already mentioned above.
  • the shape of the trough can be chosen freely, wherein according to the invention moldings are preferred in which at least one trough is a concave, convex, cubic, tetragonal, orthorhombic, cylindrical, spherical, cylinder segment, disk-shaped, tetrahedral, dodecahedral, octahedral, conical, pyramidal, ellipsoidal , five-, seven- and octagonal-prismatic as well as rhombohedral form.
  • Completely irregular shapes such as arrow or animal shapes, trees, clouds etc. can also be realized.
  • wells with rounded corners and edges or with rounded corners and chamfered edges are preferred.
  • the size of the trough compared to the entire molded body depends on the desired use of the shaped body. Depending on whether a smaller or larger amount of active substance should be contained in the second compressed part, the size of the trough may vary. Regardless of the intended use, moldings are preferred in which the weight ratio of base molding to mold filling is in the range from 1: 1 to 100: 1, preferably from 2: 1 to 80: 1, more preferably from 3: 1 to 50: 1 and especially from 4 : 1 to 30: 1.
  • the surface portions that make up the base molding or the cavity filling on the entire surface of the molding are preferred in which the surface of the pressed-in cavity filling constitutes 1 to 25%, preferably 2 to 20%, particularly preferably 3 to 15% and in particular 4 to 10% of the total surface area of the filled base molding.
  • the overall shaped body has dimensions of 20 ⁇ 20 ⁇ 40 mm and thus a total surface area of 40 cm 2
  • well fillings are preferred which have a surface area of 0.4 to 10 cm 2 , preferably 0.8 to 8 cm 2 , more preferably of 1, 2 to 6 cm 2 and in particular from 1, 6 to 4 cm 2 .
  • the trough filling and the base molding are preferably colored optically distinguishable.
  • well tablets have performance advantages on the one hand by different solubilities of the different areas on the other hand, but also by the separate storage of the active ingredients in the various molding body areas.
  • Shaped bodies in which the pressed-in cavity filling dissolves more slowly than the basic shaped body are preferred according to the invention.
  • the solubility of the well filling can be selectively varied; on the other hand, the release of certain ingredients from the well filling can lead to advantages in the dyeing process.
  • Ingredients which are preferably at least partially localized in the trough filling are, for example, the conditioning active ingredients, oil bodies, vitamins and plant active ingredients described in the paragraph "further components”.
  • the production of the shaped body according to the invention is carried out first by the dry mixing of the ingredients, which may be pre-granulated in whole or in part, and subsequent InformML, in particular pressing into tablets, wherein known methods can be used.
  • the premix is compacted in a so-called matrix between two punches to form a solid compressed product. This process, hereinafter referred to as tabletting, is divided into four sections: dosing, compaction (elastic deformation), plastic deformation and ejection.
  • the premix is introduced into the die, wherein the filling amount and thus the weight and the shape of the resulting shaped body are determined by the position of the lower punch and the shape of the pressing tool.
  • the constant dosage even at high molding throughputs is preferably via a volumetric metering of the premix reached.
  • the upper punch contacts the pre-mix and continues to descend toward the lower punch.
  • the particles of the premix are pressed closer to each other, with the void volume within the filling between the punches decreasing continuously. From a certain position of the upper punch (and thus from a certain pressure on the premix) begins the plastic deformation, in which the particles flow together and it comes to the formation of the molding.
  • the premix particles are crushed, and even higher pressures cause sintering of the premix.
  • the phase of the elastic deformation is shortened more and more, so that the resulting moldings may have more or less large cavities.
  • the finished molded body is pushed out of the die by the lower punch and carried away by subsequent transport means. At this time, only the weight of the shaped body is finally determined because the compacts due to physical processes (re-expansion, crystallographic effects, cooling, etc.) can change their shape and size.
  • the tabletting is carried out in commercial tablet presses, which can be equipped in principle with single or double punches. In the latter case, not only the upper punch is used to build up pressure, and the lower punch moves during the pressing on the upper punch, while the upper punch presses down.
  • eccentric tablet presses are preferably used in which the die or punches are attached to an eccentric disc, which in turn is mounted on an axis at a certain rotational speed. The movement of these punches is comparable to the operation of a conventional four-stroke engine.
  • the compression can be done with a respective upper and lower punch, but it can also be attached more stamp on an eccentric disc, the number of Matrizenbohritch is extended accordingly.
  • the throughputs of eccentric presses vary depending on the type of a few hundred to a maximum of 3000 tablets per hour.
  • rotary tablet presses are selected in which a larger number of dies are arranged in a circle on a so-called die table.
  • the number of matrices varies between 6 and 55 depending on the model, although larger matrices are commercially available.
  • Each die on the die table is assigned an upper and lower punch, in turn, the pressing pressure can be actively built only by the upper or lower punch, but also by both stamp.
  • the die table and the punches move about a common vertical axis, the punches by means of rail-like cam tracks during circulation in the positions for filling, compaction, plastic deformation and ejection are brought.
  • Concentric presses can be provided with two Drik to increase the throughput, with the production of a tablet only a semicircle must be traversed.
  • several filling shoes are arranged one after the other without the slightly pressed-on first layer being ejected before further filling.
  • suitable process control coat and point tablets can be produced in this way, which have a zwiebelschalenartigen structure, wherein in the case of the point tablets, the top of the core or the core layers is not covered and thus remains visible.
  • Even rotary tablet presses can be equipped with single or multiple tools, so that, for example, an outer circle with 50 and an inner circle with 35 holes are used simultaneously for pressing.
  • the throughputs of modern rotary tablet presses amount to over one million moldings per hour.
  • Tableting machines suitable for the purposes of the present invention are obtainable, for example, from Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Fann Instruments Company, Houston, Texas (USA), Hofer GmbH, Weil, Hörn & Noack Pharmatechnik GmbH, Worms, IMAmaschinessysteme GmbH Viersen, KILIAN, Cologne, KOMAGE, Kell am See, KORSCH Press AG, Berlin, and Romaco GmbH, Worms.
  • Other providers include Dr. med. Herbert Pete, Vienna (AT), Mapag Maschinenbau AG, Berne (CH), BWI Manesty, Liverpool (GB), I.
  • the method for producing the molded articles is not limited to pressing only a particulate premix into a shaped article. Rather, the method can also be extended to the effect that it produces in a conventional manner multilayer moldings by preparing two or more premixes which are pressed together.
  • the first-filled premix is slightly pre-pressed to get a smooth and parallel to the mold bottom extending top, and end-pressed after filling the second premix to the finished shaped body.
  • a further pre-compression takes place after each premix addition, before the shaped article is end-pressed after the last premix has been added.
  • the compression of the particulate composition in the trough can be carried out analogously to the preparation of the base tablets on tablet presses. Preference is given to a procedure in which only the basic shaped bodies are produced with a depression, then filled and subsequently pressed again. This can be done by ejecting the base tablets from a first tablet press, filling and transport in a second tablet press, in which the final compression takes place. Alternatively, the final compression can also take place by means of pressure rollers which roll over the shaped bodies located on a conveyor belt. But it is also possible to provide a rotary tablet press with different sets of stamps, so that a first set of dies depressions pressed into the moldings and the second set of stamps ensures after filling by Nachverpressung for a flat shaped body surface.
  • the agent A preferably contains at least one of the following additives:
  • the agent A preferably additionally contains at least one dissolution accelerator. This is particularly preferred when the agent A is granulated or present as a shaped body.
  • dissolution accelerator includes gas-evolving components, preformed and trapped gases, disintegrants and mixtures thereof.
  • gas-evolving components are used as the dissolution accelerator. Upon contact with water, these components react with each other to form gases in-situ, which create a pressure in the tablet which disintegrates the tablet into smaller particles.
  • suitable acids Preference is given to mono-, di- or trihydric acids having a pK a of from 1.0 to 6.9.
  • Preferred acids are citric, malic, maleic, malonic, itaconic, tartaric, oxalic, glutaric, glutamic, lactic, fumaric, glycolic and mixtures thereof. Particularly preferred is citric acid.
  • the citric acid in particulate form, the particles having a diameter of less than 1000 ⁇ m, in particular less than 700 ⁇ m, very particularly preferably less than 400 ⁇ m.
  • Other alternative suitable acids are the homopolymers or copolymers of acrylic acid, maleic acid, methacrylic acid or itaconic acid having a molecular weight of 2,000 to 200,000. Particularly preferred are homopolymers of acrylic acid and copolymers of acrylic acid and maleic acid.
  • preferred bases are alkali metal silicates, carbonates, bicarbonates and mixtures thereof. Metasilicates, bicarbonates and carbonates are particularly preferred, bicarbonates are most preferred.
  • particulate hydrogencarbonates having a particle diameter of less than 1000 ⁇ m, in particular less than 700 ⁇ m, very particularly preferably less than 400 ⁇ m.
  • Sodium or potassium salts of the above bases are particularly preferred.
  • These gas-evolving components are contained in the inventive dyeing composition preferably in an amount of at least 10 wt .-%, in particular of at least 20 wt .-%.
  • the gas is preformed or trapped so that upon onset of dissolution of the molded article, gas evolution commences and the further dissolution is accelerated.
  • suitable gases are air, carbon dioxide, N 2 O, oxygen and / or other non-toxic, non-combustible gases.
  • disintegration aids so-called disintegrants
  • disintegrants are incorporated as a dissolution accelerator into the agent A in order to shorten the disintegration times. This is particularly preferred when the agent A is present as a shaped body or as granules.
  • disintegrating agents or disintegrants are understood to mean auxiliaries which are suitable for rapid disintegration of solid agglomerates - that is to say in particular of shaped bodies - in water and / or organic solvents.
  • Swelling disintegration aids are, for example, synthetic polymers such as polyvinylpyrrolidone (PVP) or natural polymers or modified natural substances such as cellulose and starch and their derivatives, alginates or casein derivatives.
  • PVP polyvinylpyrrolidone
  • Disintegrating agents based on cellulose are used as preferred disintegrating agents in the context of the present invention, so that preferred agents A - in particular if present as shaped bodies - are present in cellulose-based disintegrating agents in amounts of from 0.5 to 70% by weight, preferably from 3 to 30% by weight .-%, based on the total agent A included.
  • Pure cellulose has the formal gross composition (C 6 H 10 Os) n and is formally a ⁇ -1,4-polyacetal of cellobiose, which in turn is composed of two molecules of glucose.
  • Suitable celluloses consist of about 500 to 5000 glucose units and therefore have average molecular weights of 50,000 to 500,000.
  • cellulose derivatives which are obtainable by polymer-analogous reactions of cellulose.
  • Such chemically modified celluloses include, for example, products of esterifications or etherifications in which hydroxy hydrogen atoms have been substituted.
  • Celluloses in which the hydroxy groups have been replaced by functional groups which are not bonded via an oxygen atom can also be used as cellulose derivatives.
  • the group of cellulose derivatives includes, for example, alkali metal celluloses, carboxymethylcellulose (CMC), cellulose esters and ethers, and aminocelluloses.
  • the cellulose derivatives mentioned are preferably not used as the sole cellulosic disintegrating agent but are used in admixture with cellulose.
  • the content of these mixtures of cellulose derivatives is preferably below 50% by weight, more preferably below 20% by weight, based on the cellulose-based disintegration agent. It is particularly preferred to use cellulose-based disintegrating agent which is free of cellulose derivatives.
  • the cellulose used as disintegration assistant can not be used in finely divided form but, before it is added to the premixes to be tabletted, converted into a coarser form, for example granulated or compacted.
  • the particle sizes of such disintegrating agents are usually above 200 .mu.m, preferably at least 90 wt .-% between 300 and 1600 .mu.m and in particular at least 90 wt .-% between 400 and 1200 microns.
  • the disintegration auxiliaries according to the invention are available commercially for example under the name of Arbocel ® from Rettenmaier.
  • a preferred disintegration assistants for example, Arbocel ® TF-30-HG.
  • microcrystalline cellulose As a cellulose-based disintegrating agent or as a component of this component, microcrystalline cellulose is used. This microcrystalline cellulose is obtained by partial hydrolysis of celluloses under conditions which attack and completely dissolve only the amorphous regions (about 30% of the total cellulose mass) of the celluloses, leaving the crystalline regions (about 70%) intact. Subsequent deaggregation of the microfine celluloses produced by the hydrolysis yields the microcrystalline celluloses which have primary particle sizes of about 5 ⁇ m and can be compacted, for example, into granules having an average particle size of 200 ⁇ m. Suitable microcrystalline cellulose is available commercially for example under the trade name Avicel ®.
  • the accelerated dissolution of the agent A according to the invention can also be achieved by pre-granulation of the further constituents.
  • the agents A according to the invention contain a mixture of starch and at least one saccharide in order to accelerate the dissolution, in particular in addition to at least one cellulose-based disintegrant.
  • Disaccharides are preferably used saccharides of this embodiment. Said mixture is preferably present in a weight ratio of starch and the saccharides used of from 10: 1 to 1:10, more preferably from 1: 1 to 1:10, most preferably from 1: 4 to 1: 8 in the agent A. ,
  • the disaccharides used are preferably selected from lactose, maltose, sucrose, trehalose, turanose, gentiobiose, melibiose and cellobiose. Particular preference is given to using lactose, maltose and sucrose and very particularly preferably lactose in the moldings according to the invention.
  • the starch-saccharide mixture is contained in the agent A in an amount of 5 to 70% by weight, preferably 20 to 40% by weight, based on the mass of the entire agent A.
  • the agents A contain at least one pearlescent pigment.
  • pearlescent pigments are natural pearlescent pigments such as e.g. Fish silver (guanine / hypoxanthine mixed crystals from fish scales) or mother-of-pearl (from ground mussel shells), monocrystalline pearlescent pigments such as e.g. Bismuth oxychloride, and pearlescent pigments based on mica or mica / metal oxide. The latter pearlescent pigments are provided with a metal oxide coating.
  • the use of the pearlescent pigments gives gloss and, if appropriate, additionally color effects in the compositions A according to the invention.
  • the coloring by the pearlescent pigments used in the agent A does not affect the color result of the dyeing of the keratin fibers.
  • Mica-based and mica / metal oxide-based pearlescent pigments are preferred according to the invention.
  • Mica belongs to the layer silicates. The most important representatives of these silicates are muscovite, phlogopite, paragonite, biotite, lepidolite and margarite.
  • the mica predominantly muscovite or phlogopite, is coated with a metal oxide. Suitable metal oxides include TiO 2 , Cr 2 O 3 and Fe 2 O 3 .
  • interference pigments and color luster pigments are obtained as pearlescent pigments according to the invention. In addition to a glittering optical effect, these pearlescent pigment types also have color effects.
  • the usable according to the invention Pearlescent pigments further contain a color pigment which does not derive from a metal oxide.
  • the grain size of the pearlescent pigments preferably used is preferably between 1.0 and 100 .mu.m, particularly preferably between 5.0 and 60.0 .mu.m.
  • Particularly preferred pearlescent pigments are marketed by Merck under the trade names Colorona ®, wherein the pigments wt Colorona ® red-brown (47-57.% Muscovite mica (KH 2 (AISi0 4) 3), 43-50 wt .% Fe 2 O 3 (INCI: Iran oxide Cl 77491), ⁇ 3 weight% TiO 2 (INCI: Titanium Dioxide CI 77891)., Colorona ® Blue Black Star (39-47% by weight of muscovite mica (KH 2 (AISi0. 4 ) 3), 53-61 wt% of Fe 3 O 4 (INCI:.
  • the agent A - or agent A1 and / or A2 - preferably additionally contains at least one adsorbent.
  • the adsorbents which can be used according to the invention can be hydrophilic or hydrophobic, with hydrophilic adsorbents being preferred.
  • the adsorbents of the invention are preferably present in an amount of 0.05 to 15 wt .-%, particularly preferably from 0.2 to 10 wt .-%, each based on the weight of the composition.
  • Inventive adsorbents preferably have a BET specific surface area of from 40 to 4000 m 2 / g, in particular from 100 to 1000 m 2 / g (determined in each case according to DIN ISO 9277: 2003-05).
  • Preferred adsorbents according to the invention have pores, in particular mesopores and / or micropores and / or macropores.
  • a pore size of at least 0.4 nm is a preferably suitable pore size.
  • the adsorbents preferably have an average pore volume of from 0.01 to 5.0 cm- 3 g, in particular from 0.1 to 4 cm 3 / g.
  • Adsorbents which can preferably be used according to the invention are selected from at least one representative of the mineral oxide adsorbents.
  • the mineral oxide adsorbents are again preferably selected from aluminates, silicates, aluminum silicates, titanium dioxide and silica gel, in particular aluminates, silicates, aluminum silicates and Silkagel. Also according to the invention are mixtures of these preferred mineral oxide adsorbents
  • the mineral oxide adsorbents contained in the agent according to the invention preferably have a particle diameter of less than 800 .mu.m, preferably less than 300 .mu.m.
  • Particularly preferred aluminates are selected from active alumina, alpha-alumina, beta-alumina, gamma-alumina and mixtures thereof.
  • Aluminum silicates also called aluminosilicates
  • aluminosilicates are selected from phyllosilicates, tectosilicates.
  • Preferred phyllosilicates are selected from kaolins (here in particular kaolinite, dickite, halloysite and nacrite), serpentine, talc, pyrophyllite, montmorillonite, quartz, bentonite, mica (here in particular under illite, muscovite, paragonite, phlogopite, biotite, lepidolite, margarite , Smectite (here in particular montmorillonite, saponite, nontronite, hectorite)).
  • kaolins here in particular kaolinite, dickite, halloysite and nacrite
  • serpentine talc
  • pyrophyllite montmorillonite
  • quartz quartz
  • bentonite mica
  • mica here in particular under illite, muscovite, paragonite, phlogopite
  • biotite lepidolite
  • margarite margarite
  • Preferred tectosilicates are selected from feldspar minerals (especially albite, orthoclase, anorthite, leucite, sodalite, hauyne, labradorite, lasurite, nosean, nepheline), zeolites.
  • Zeolites are natural or synthetic crystalline aluminum silicates of alkali or alkaline earth metals. Zeolites consist of SiO 4 and AIO 4 tetrahedra linked by four, six, eight, or twelve oxygen rings, creating cavities that extend throughout the zeolite crystal. Among the preferred zeolites are the zeolites of the type A, K, L, PL, O, T, X, Y and ⁇ and mixtures thereof.
  • Particularly preferred zeolites are selected in particular under zeolite A (here in particular under Na 12 [(AIO 2 ) 12 (SiO 2 ) 12 ]), Ca 5 Na 5 [(AIO 2 ) 12 (SiO 2 ) 12 ], [Ki 2 [( AIO 2 ) i2 (SiO 2 ) i 2 ]), zeolite X (here in particular under Na 86 E (AIO 2 ) S 6 (SiO 2 ) 10e)), Ca 40 Na 6 I (AIO 2 ) Se (SiO 2 ) 10e)], Sr 2 IBa 22 I (AIO 2 ) Se (SiO 2 ) 10e]), zeolite Y (here in particular under Na 56 [(AIO 2 ) 56 (SiO 2 ) i3 6 ], Na5e [(AIO 2 ) 5e (SiO 2 ) 13 6]), ZSM-5 (here in particular Na 3 [(AIO 2 ) 3 (
  • liquid cosmetic carrier for the agent B are particularly creams, emulsions, gels or surfactant-containing foaming solutions, such as shampoos, foam aerosols or other preparations which are particularly suitable for use on the hair.
  • the liquid cosmetic carriers may in particular be aqueous or aqueous-alcoholic.
  • Liquid is understood according to the invention when the cosmetic carrier has a liquid state of aggregation at 25 ° C. under a pressure of 1 atm.
  • An aqueous cosmetic carrier contains at least 50% by weight of water.
  • aqueous-alcoholic cosmetic carriers include aqueous solutions containing from 3 to 70% by weight of an alcohol.
  • the agent B additionally contains at least one organic solvent.
  • This organic solvent is again preferably selected from the group that is formed
  • Preferred (C 1 to C 4 ) monohydroxy alcohols are ethanol and isopropanol.
  • a preferred (C 3 to C 6 ) dihydroxy alcohol is 1, 2-propanediol.
  • the preferred (C 3 to C 6 ) trihydroxy alcohol is glycerol.
  • a cyclic, organic carbonate at least one cyclic carbonic acid ester is preferably suitable according to the invention. These cyclic esters of carbonic acid are derived from 1,3-dioxolan-2-one and can be described by the following basic structure of the formula (1-1):
  • radicals R 1 , R 2 , R 3 and R 4 independently of one another are a hydrogen atom or organic radicals, in particular alkyl, alkenyl or alkylaryl, which may additionally be substituted by further groups, in particular hydroxyl groups.
  • the 1, 3-dioxolan-2-one, the radicals R 1 , R 2 , R 3 and R 4 of the formula (1-1) are each a hydrogen atom.
  • suitable cyclic carbonic acid esters concern derivatives of this basic body, wherein at least one of the radicals R 1 , R 2 , R 3 and R 4 of the formula (1-1) is different from a hydrogen atom.
  • R 1 is a substituted or unsubstituted alkyl, alkenyl or alkylaryl radical.
  • Preferred radicals R 1 according to formula (I-2) are methyl, ethyl, n-propyl, iso-propyl and hydroxymethyl, 1-hydroxyethyl and 2-hydroxyethyl radicals.
  • Particularly preferred agents according to the invention are consequently characterized in that they contain as 1,3-dioxolan-2-one derivative at least one compound of the above formula (I-2) in which R 1 is a substituted or unsubstituted alkyl, alkenyl or alkylaryl radical, wherein in further preferred agents according to the invention the radical R 1 in formula (I-2) is selected from methyl, ethyl, n-propyl, iso-propyl and hydroxymethyl, 1-hydroxyethyl and 2-hydroxyethyl radicals.
  • Ethylene carbonate is a colorless crystalline compound that melts at 39 0 C and boils at 238 0 C.
  • the readily soluble in water, alcohols and organic solvents ethylene carbonate can be prepared by large-scale synthesis of ethylene oxide and liquid CO 2 .
  • Propylene carbonate is a water-bright, easily mobile liquid, with a density of 1, 2057 like "3 , the melting point is -49 0 C, the boiling point at 242 0 C.
  • propylene carbonate is industrially by reaction of propylene oxide and CO 2 at 200 0 C.
  • Glycerine carbonate can be obtained by transesterification of ethylene carbonate or dimethyl carbonate with glycerol, with the by-products of ethylene glycol or methanol, as well as of glycidol (2,3-epoxy-1-propanol), which is pressurized in presence is reacted with CO 2 to form catalysts of glycerol.
  • glycerol is a clear, mobile liquid with a density of 1, 398 like "3, boiling at 125-13O 0 C (0.15 mbar).
  • Isopropanol, propylene carbonate and diethylene glycol to use as organic solvents.
  • the organic solvents are preferably used in the middle B in an amount of 0.5 to 20 wt .-%, in particular from 2 to 10 wt .-%, especially from 3 to 6 wt .-%, each based on the weight of the composition B, used.
  • kits are preferred in which the agents A and B - or the agents A1, A2 and B - are designed such that the mixture of the agents A and B, or of the agents A1, A2 and B, a pH Value greater than 7.
  • the means B necessarily contain at least one alkalizing agent.
  • the alkalizing agents contained in the middle B are preferably selected from at least one alkalizing agent selected from the group consisting of ammonia, basic amino acids, alkali hydroxides, alkanolamines, alkali metal metasilicates, urea, morpholine, N-methylglucamine, imidazole, alkali phosphates and alkali hydrogen phosphates.
  • the alkali metal ions used are preferably lithium, sodium, potassium, in particular sodium or potassium.
  • the basic amino acids which can be used as alkalizing agents according to the invention are preferably selected from the group formed from L-arginine, D-arginine, D, L-arginine, L-histidine, D-histidine, D, L-histidine, L-lysine, D-lysine, D, L-lysine, more preferably L-arginine, D-arginine, D, L-arginine used as an alkalizing agent according to the invention.
  • the alkali metal hydroxides which can be used as the alkalizing agent according to the invention are preferably selected from the group formed from sodium hydroxide and potassium hydroxide.
  • alkanolamines which can be used as alkalizing agents according to the invention are preferably selected from primary amines having a C 2 -C 6 -alkyl basic body which carries at least one hydroxyl group.
  • Particularly preferred alkanolamines are selected from the group formed from 2-aminoethan-1-ol (monoethanolamine), 3-aminopropan-1-ol, 4-aminobutan-1-ol, 5-aminopentan-1-ol, 1 -Aminopropan-2-ol, 1-aminobutan-2-ol, 1-aminopentan-2-ol, 1-aminopentan-3-ol, 1-aminopentan-4-ol, 3-amino-2-methylpropan-1-ol , 1-amino-2-methylpropan-2-ol, 3-aminopropane-1, 2-diol, 2-amino-2-methylpropane-1,3-diol.
  • Very particularly preferred alkanolamines according to the invention are selected from the group consisting of 2-aminoethane-1-ol, 2-amino-2-methylpropan-1-ol and 2-amino-2-methylpropane-1,3-diol.
  • the alkalizing agent is particularly preferably selected from at least one compound from the group formed from ammonia, 2-aminoethanol, 2-amino-2-methylpropan-1-ol, 2-amino-2-methyl-propane-1, 3 diol, potassium hydroxide, sodium hydroxide, L-arginine, D-arginine, DL-arginine, N-methylglucamine, morpholine, imidazole and urea. Furthermore, it is also possible to use buffer systems in agent B adjusted to a pH greater than 7.
  • the pH buffer system is considered to be those chemical compounds or a combination of chemical compounds which, in a solution, cause the pH of the solution to change only slightly when a small amount of acid or alkali is added to a volume of the cosmetic carrier. This change is less pronounced than is the case when the same amount of acid or lye is added to an equal volume of the cosmetic carrier without the pH buffer system.
  • Such pH buffer systems are preferably selected from at least one member selected from the group consisting of bicarbonate, organic acid (especially citric acid) / monohydrogen phosphate, malic acid (especially
  • Citric acid / dihydrogen phosphate, tris (hydroxymethyl) aminomethane / maleic acid / NaOH,
  • Particularly preferred pH buffer systems are selected from at least one member of the group formed from tris (hydroxymethyl) amino methane / maleic acid / NaOH, tris (hydroxymethyl) aminomethane / maleic acid / KOH,
  • the slotted pH buffer systems from the above list represent mixtures of these compounds separated by the slash.
  • the anionic compounds listed are used in the form of their salts with a corresponding mono- or polyvalent cation.
  • Preferred cations are alkali metal cations (especially sodium or potassium) and ammonium ions.
  • Useful acids which can be used according to the invention in the buffer systems are, for example, citric acid, tartaric acid or malic acid or mixtures thereof.
  • the pH buffer system is preferably in an amount of 0.1 to 10.0 wt .-%, particularly preferably from 0.3 to 5.0 wt .-%, most preferably from 0.5 to 3.0 wt. -%, each related to the Weight of the application mixture of agent A and agent B, or from the agents A1, A2 and B, containing in the ready colorant.
  • the pH of the final application mixture prepared by mixing agents A and B and agents A1, A2 and B, respectively may be between 7.5 and 11. If the pH of the final application mixture is in a range of 8 to 10, this is preferred.
  • agents A and / or B - or the agents A1 and / or A2 and / or B - additionally contain at least one surfactant. It is particularly preferred if agent B additionally contains at least one surfactant.
  • the ready-to-use colorants contain at least one surfactant, with both anionic and zwitterionic, ampholytic, nonionic and cationic surfactants being suitable in principle. In many cases, however, it has proved to be advantageous to select the surfactants from anionic, zwitterionic or nonionic surfactants.
  • Suitable anionic surfactants in the compositions are all anionic surfactants suitable for use on the human body. These are characterized by a water-solubilizing, anionic group such. Example, a carboxylate, sulfate, sulfonate or phosphate group and a lipophilic alkyl group having about 10 to 22 carbon atoms. In addition, glycol or polyglycol ether groups, ester, ether and amide groups and hydroxyl groups may be present in the molecule.
  • anionic surfactants are, in each case in the form of the sodium, potassium and ammonium and the mono-, di- and Trialkanolammoniumsalze with 2 or 3 C atoms in the alkanol group, linear fatty acids having 10 to 22 carbon atoms (soaps )
  • Ethercarbon Acid the formula RO- (CH 2 -CH 2 O) x -CH 2 -COOH, in which R is a linear
  • Alkyl group having 10 to 22 C atoms and x 0 or 1 to 16,
  • Sulfosuccinic acid mono-alkyl polyoxyethyl esters having 8 to 18 C atoms in the alkyl group and
  • G glycoside unit which is derived from a sugar containing 5 or 6 carbon atoms, p number from 1 to 10, in particular the Laurylglucosidcarboxylat, such as is available as Plantapon ® LGC from Cognis Germany,
  • Esters of tartaric acid and citric acid with alcohols which are adducts of about 2-15 molecules of ethylene oxide and / or propylene oxide with fatty alcohols having 8 to 22 carbon atoms.
  • Preferred anionic surfactants are alkyl sulfates, alkyl polyglycol ether sulfates and ether carboxylic acids having 10 to 18 carbon atoms in the alkyl group and up to 12 glycol ether groups in the molecule and in particular salts of saturated and in particular unsaturated C 8 -C 22 carboxylic acids, such as oleic acid, stearic acid, isostearic acid and palmitic acid ,
  • Nonionic surfactants contain as hydrophilic group z.
  • Such compounds are, for example
  • Preferred nonionic surfactants are alkyl polyglycosides of the general formula R 1 O- (Z) X. These connections are identified by the following parameters.
  • the alkyl radical R 1 contains 6 to 22 carbon atoms and may be both linear and branched. Preference is given to primary linear and methyl-branched in the 2-position aliphatic radicals.
  • Such alkyl radicals are, for example, 1-octyl, 1-decyl, 1-lauryl, 1-myristyl, 1-cetyl and 1-stearyl. Particularly preferred are 1-octyl, 1-decyl, 1-lauryl, 1-myristyl.
  • oxo-alcohols compounds with an odd number of carbon atoms in the alkyl chain predominate.
  • the alkyl polyglycosides which can be used according to the invention can contain, for example, only one particular alkyl radical R 1 .
  • these compounds are prepared starting from natural fats and oils or mineral oils.
  • the alkyl radicals R are mixtures corresponding to the starting compounds or corresponding to the particular work-up of these compounds.
  • R 1 consists essentially of C 8 and C 1 alkyl groups, substantially of C 2 - and C 4 -alkyl groups, essentially of C 8 - to C 16 -alkyl groups or essentially of C 12 - To C 16 alkyl groups.
  • sugar building block Z it is possible to use any desired mono- or oligosaccharides.
  • sugars with 5 or 6 carbon atoms and the corresponding oligosaccharides are used.
  • Such sugars are, for example, glucose, fructose, galactose, arabinose, ribose, xylose, lyxose, allose, altrose, mannose, gulose, idose, talose and sucrose.
  • Preferred sugar building blocks are glucose, fructose, galactose, arabinose and sucrose; Glucose is particularly preferred.
  • the alkyl polyglycosides which can be used according to the invention contain on average from 1.1 to 5 sugar units. Alkyl polyglycosides having x values of 1.1 to 1.6 are preferred. Very particular preference is given to alkyl glycosides in which x is 1: 1 to 1, 4.
  • the alkyl glycosides can also serve to improve the fixation of fragrance components on the hair.
  • this substance class as a further constituent of the preparations according to the invention in the event that an effect of the perfume oil on the hair which exceeds the duration of the hair treatment is desired.
  • alkoxylated homologs of said alkyl polyglycosides can also be used according to the invention. These homologs may contain on average up to 10 ethylene oxide and / or propylene oxide units per alkyl glycoside unit.
  • the agent B contains as nonionic surfactant at least one (C 8 to C 22 ) fatty alcohol ethoxylated with 20 to 60 units of ethylene oxide, in particular with 30 to 60 units of ethylene oxide, and / or
  • Ethylene oxide, castor oil and hydrogenated castor oil are Ethylene oxide, castor oil and hydrogenated castor oil.
  • nonionic surfactants are sold under the trade names Cremophor ® RH40 (hydrogenated castor oil with 40-45 EO units (INCI name: PEG-40 Hydrogenated Castor Oil)) (from BASF or Mergital® ® CS 5oA fatty alcohol with about 50 EO units (INCI name: Ceteareth-50) sold by Cognis.
  • zwitterionic surfactants can be used, in particular as cosurfactants.
  • Zwitterionic surfactants are those surface-active compounds which carry at least one quaternary ammonium group and at least one -COO () or -SO 3 - group in the molecule.
  • Particularly suitable zwitterionic surfactants are the so-called betaines such as N-alkyl-N, N-dimethylammonium glycinates, for example cocoalkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinates, for example cocoacylaminopropyldimethylammonium glycinate, and 2-alkyl-3-carboxylmethyl-3-hydroxyethyl-imidazolines having in each case 8 to 18 C atoms in the alkyl or acyl group and the cocoacylaminoethylhydroxyethylcarboxymethyl glycinate.
  • a preferred zwitterionic surfactant is the fatty acid amide derivative known by the INCI name Cocamidopropyl Betaine.
  • ampholytic surfactants are surface-active compounds which, apart from a C 8 -C 8 alkyl or acyl group, contain at least one free amino group and at least one -COOH or - contain SO 3 H group and are capable of forming inner salts.
  • ampholytic surfactants are N-alkylglycines, N-alkylpropionic acids, N-alkylaminobutyric acids, N-alkyliminodipropionic acids, N-hydroxyethyl-N-alkylamidopropylglycines, N-alkyltaurines, N-alkylsarcosines, 2-alkylaminopropionic acids and alkylaminoacetic acids each having about 8 to 18 C - atoms in the alkyl group.
  • Particularly preferred ampholytic surfactants are N-cocoalkyl aminopropionate the, cocoacylaminoethyl aminopropionate and Ci ⁇ -is-acyl sarcosine.
  • the cationic surfactants used are, in particular, those of the quaternary ammonium compound type, the esterquats and the amidoamines.
  • Preferred quaternary ammonium compounds are ammonium halides, in particular chlorides and bromides, such as alkyltrimethylammonium chlorides, dialkyldimethylammonium chlorides and trialkyl methylammonium chlorides, eg. Cetyltrimethylammonium chloride, stearyltrimethylammonium chloride, distearyldimethylammonium chloride, lauryldimethylammonium chloride, lauryldimethylbenzylammonium chloride and tricetylmethylammonium chloride, as well as the imidazolium compounds known under the INCI names Quaternium-27 and Quaternium-83.
  • the long alkyl chains of the above-mentioned surfactants preferably have 10 to 18 carbon atoms.
  • Esterquats are known substances which contain both at least one ester function and at least one quaternary ammonium group as a structural element.
  • Preferred ester quats are quaternized ester salts of fatty acids with triethanolamine, quaternized ester salts of fatty acids with diethanolalkylamines and quaternized ester salts of fatty acids with 1,2-dihydroxypropyldialkylamines.
  • Such products are marketed under the trade names Stepantex® ®, ® and Dehyquart® Armocare® ®.
  • the products Armocare ® VGH-70, a N, N-bis (2-palmitoyloxyethyl) dimethylammonium chloride, as well as Dehyquart ® F-75 and Dehyquart ® AU-35 are examples of such esterquats.
  • the alkylamidoamines are usually prepared by amidation of natural or synthetic fatty acids and fatty acid cuts with dialkylaminoamines.
  • An inventively particularly suitable compound from this group of substances under the name Tegoamid ® S 18 commercial stearamidopropyl dimethylamine is.
  • cationic surfactants which can be used according to the invention are the quaternized protein hydrolysates.
  • cationic silicone oils such as, for example, the commercially available products Q2-7224 (manufacturer: Dow Corning, a stabilized trimethylsilylamodimethicone), Dow Corning 929 emulsion (containing a hydroxylamino-modified silicone, also referred to as amodimethicones), SM -2059 (manufacturer: General Electric), SLM 55067 (manufacturer: Wacker) and Abil ® quat 3270 and 3272 (manufacturer: Th Goldschmidt; di- quaternary polydimethylsiloxanes, quaternium-80.).
  • Glucquat ® 100 is, according to INCI nomenclature a "lauryl methyl Gluceth-10 Hydroxypropyl Dimonium Chloride”.
  • the compounds used as surfactant with alkyl groups may each be uniform substances. However, it is generally preferred to use native vegetable or animal raw materials in the production of these substances, so that substance mixtures having different alkyl chain lengths depending on the respective raw material are obtained.
  • both products with a "normal” homolog distribution and those with a narrow homolog distribution can be used.
  • normal homolog distribution are meant mixtures of homologues which are obtained in the reaction of fatty alcohol and alkylene oxide using alkali metals, alkali metal hydroxides or alkali metal alcoholates as catalysts. Narrowed homolog distributions, on the other hand, are obtained when, for example, hydrotalcites, alkaline earth metal salts of ether carboxylic acids, alkaline earth metal oxides, hydroxides or alcoholates are used as catalysts. The use of products with narrow homolog distribution may be preferred.
  • the agents A and / or B - or the agents A1 and / or A2 and / or B - may additionally contain at least one silicone.
  • the silicones are selected from at least one member of the list formed from:
  • polyalkyl siloxanes polyaryl siloxanes, polyalkylaryl siloxanes which are volatile or nonvolatile, straight chain, branched or cyclic, crosslinked or uncrosslinked;
  • grafted silicone polymers having a non-silicone-containing organic backbone consisting of an organic backbone formed from organic monomers containing no silicone to which at least one polysiloxane macromer has been grafted in the chain and optionally at least one chain end;
  • grafted polysiloxane backbone silicone polymers having grafted thereto non-silicone-containing organic monomers having a polysiloxane backbone to which at least one organic macromer containing no silicone has been grafted in the chain, and optionally at least at one of its ends , such as the commercial product Abil B 8832 from Degussa sold under the INCI name Bis-PEG / PPG-20/20 dimethicone; (vi) or mixtures thereof.
  • Particularly preferred cosmetic or dermatological preparations according to the invention are characterized in that they contain at least one silicone of the formula (Si-1)
  • x is a number from 0 to 100, preferably from 0 to 50, more preferably from 0 to 20 and in particular 0 to 10.
  • the inventively preferred cosmetic or dermatological preparations contain a silicone of the above formula (Si-1). These silicones are referred to as dimethicones according to the INCI nomenclature. It is in the context of the present invention as the silicone of the formula (Si-1), preferably the compounds:
  • mixtures of o.g. Silicones may be included in the preferred compositions.
  • Preferred silicones according to invention have at 2O 0 C to viscosities of 0.2 to 2 mmV 1, wherein silicones having viscosities of 0.5 to 1 mimV 1 are particularly preferred.
  • Particularly preferred agents contain one or more amino-functional silicones.
  • Such silicones may e.g. by the formula (Si-2)
  • R is a hydrocarbon or a hydrocarbon radical having 1 to about 6 carbon atoms
  • Q is a polar radical of the general formula -R 1 HZ, wherein
  • R 1 is a divalent linking group bonded to hydrogen and the radical Z composed of carbon and hydrogen atoms, carbon, hydrogen and oxygen atoms or carbon, hydrogen and nitrogen atoms, and Z is an organic, amino-functional radical , the at least one amino-functional
  • M is a suitable silicone end group, as is known in the art, preferably trimethylsiloxy.
  • Non-limiting examples of the groups represented by R in formula (Si-2) include alkyl groups such as methyl, ethyl, propyl, isopropyl, isopropyl, butyl, isobutyl, amyl, isoamyl, hexyl, isohexyl and the like; Alkenyl radicals such as vinyl, halovinyl, alkylvinyl, allyl, haloallyl, alkylallyl; Cycloalkyl radicals such as cyclobutyl, cyclopentyl, cyclohexyl and the like; Phenyl radicals, benzyl radicals, halohydrocarbon radicals such as 3-chloropropyl, 4-bromobutyl, 3,3,3-trifluoropropyl, chlorocyclohexyl, bromophenyl, chlorophenyl and the like, and sulfur containing radicals such as mercaptoethyl, mer
  • R 1 examples include methylene, ethylene, propylene, hexamethylene, decamethylene, - CH 2 CH (CH 3 ) CH 2 -, phenylene, naphthylene, -CH 2 CH 2 SCH 2 CH 2 -, -CH 2 CH 2 OCH 2 - , -OCH 2 CH 2 -, -OCH 2 CH 2 CH 2 -, -CH 2 CH (CH 3 ) C (O) OCH 2 -, - (CHz) 3 CC (O) OCH 2 CH 2 -, -C 6 H 4 C 6 H 4 -, -C 6 H 4 CH 2 C 6 H 4 -; and - (CH 2 ) 3 C (O) SCH 2 CH 2 -.
  • Z is according to formula (Si-2) an organic, amino-functional radical containing at least one functional amino group.
  • a possible formula for said Z is NH (CH 2 ) Z NH 2 , where z is an integer greater than or equal to 1.
  • Another possible formula for said Z is -NH (CH 2 ) Z (CH 2 ) ZZ NH, wherein both z and zz independently of one another are an integer greater than or equal to 1, this structure comprising diamino ring structures, such as piperazinyl.
  • Said Z is most preferably an -NHCH 2 CH 2 NH 2 radical.
  • Z is -N (CH 2 ) Z (CH 2 ) ZZ NX 2 or - NX 2 , wherein each X of X 2 is independently selected from the group consisting of hydrogen and alkyl groups having 1 to 12 carbon atoms, and zz is 0.
  • Q according to formula (Si-2) is most preferably a polar amino-functional radical of formula - CH 2 CH 2 CH 2 NH 2 CH 2 CH 2 NH 2 .
  • assumes values in the range of 0 to 2
  • b takes values in the range of 2 to 3
  • a + b is less than or equal to 3
  • c is a number in the range of 1 to 3.
  • the molar ratio of the R a Q b SiO (4 a a b) / 2 units to the R 0 SiO (4 C) / 2 units in formula (Si-2) is in the range of about 1: From 2 to 1:65, preferably from about 1: 5 to about 1:65, and most preferably from about 1:15 to about 1:20.
  • the various variable substituents in the above formula may be different for the various silicone components present in the silicone blend.
  • Preferred cosmetic or dermatological preparations according to the invention contain an amino-functional silicone of the formula (Si-3)
  • G is -H, a phenyl group, -OH, -O-CH 3 , -CH 3 , -O-CH 2 CH 3 , -CH 2 CH 3 , -O-CH 2 CH 2 CH 3 ,
  • a is a number between O and 3, in particular O;
  • b is a number between 0 and 1, in particular 1, m and n are numbers whose sum (m + n) is between 1 and 2000, preferably between 50 and 150, where n preferably values from 0 to 1999 and in particular from 49 to 149 and m preferably assumes values from 1 to 2000, in particular from 1 to 10,
  • R ' is a monovalent radical selected from
  • 20 -alkyl radicals preferably -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 , -CH (CH 3 ) 2 , -CH 2 CH 2 CH 2 CH 3 , -CH 2 CH (CH 3 ) 2 , -CH (CH 3 ) CH 2 CH 3 , -C (CH 3 J 3 , and A represents an anion, which is preferably selected from chloride, bromide, iodide or methosulfate.
  • Cationic silicone oils are suitable according to the invention, for example the commercially available Dow Corning 929 emulsion (containing a hydroxylamino-modified silicone which is referred to as amodimethicone), DC 2-2078 (manufacturer Dow Corning, INCI name: Aminopropyl Phenyl Trimethicone), DC 5-7113 (manufacturer Dow Corning, INCI name: Silicone Quaternium 16), SM-2059 (manufacturer: General Electric), SLM-55067 (manufacturer: Wacker) and Abif-Quat 3270 and 3272 (manufacturer: Th. Goldschmidt; diquaternary polydimethylsiloxanes, quaternium-80).
  • Dow Corning 929 emulsion containing a hydroxylamino-modified silicone which is referred to as amodimethicone
  • DC 2-2078 manufactured by Dow Corning, INCI name: Aminopropyl Phenyl Trime
  • Particularly preferred agents are characterized in that they contain at least one amino-functional silicone of the formula (Si 3-a)
  • n and n are numbers whose sum (m + n) is between 1 and 2000, preferably between 50 and 150, where n preferably values of 0 to 1999 and in particular of 49 to 149 and m preferably values of 1 to 2000 , in particular from 1 to 10 assumes.
  • silicones are referred to as trimethylsilylamodimethicones according to the INCI declaration and are available, for example, under the name Q2-7224 (manufacturer: Dow Corning, a stabilized trimethylsilylamodimethicone).
  • agents which contain at least one amino-functional silicone of the formula (3b) are particularly preferred.
  • R is -OH, a (optionally ethoxylated and / or propoxylated) (Ci to C 20 ) -
  • R ' is -OH, a (C 1 to C 20 ) alkoxy group or a -CH 3 group and m, n1 and n2 are numbers whose sum (m + n1 + n2) is between 1 and 2,000, preferably between 50 and Is 150, wherein the sum (n1 + n2) preferably takes values from 0 to 1999 and in particular from 49 to 149 and m preferably values from 1 to 2000, in particular from 1 to 10.
  • silicones are according to the INCI declaration as Amodimethicone, or as functionalized Amodimethicone, such as bis (C13-15 alkoxy) PG Amodimethicone (for example, as a commercial product: DC 8500 from Dow Corning available), trideceth-9 PG-amodimethicones (for example as a commercial product Silcare Silicone SEA available from Clariant).
  • Amodimethicone or as functionalized Amodimethicone, such as bis (C13-15 alkoxy) PG Amodimethicone (for example, as a commercial product: DC 8500 from Dow Corning available), trideceth-9 PG-amodimethicones (for example as a commercial product Silcare Silicone SEA available from Clariant).
  • amino-functional silicones preference is given to cosmetic or dermatological preparations according to the invention which contain an amino-functional silicone whose amine number is above 0.25 meq / g, preferably above 0.3 meq / g and in particular above 0.4 meq / g is.
  • the amine number stands for the milliequivalents of amine per gram of the amino-functional silicone. It can be determined by titration and also expressed in mg KOH / g.
  • Cosmetic or dermatological preparations preferred according to the invention are characterized in that, based on their weight, they contain 0.01 to 10% by weight, preferably 0.1 to 8% by weight, particularly preferably 0.25 to 7.5% by weight and in particular from 0.5 to 5% by weight of amino-functional silicone (s).
  • cyclic dimethicones designated as cyclomethicones according to INCI are also preferably used according to the invention.
  • cosmetic or dermatological preparations according to the invention are preferred which contain at least one silicone of the formula (Si-4)
  • x is a number from 0 to 200, preferably from 0 to 10, more preferably from 0 to 7 and in particular 0, 1, 2, 3, 4, 5 or 6 stands.
  • the silicones described above have a backbone composed of -Si-O-Si units. Of course, these Si-O-Si units may also be interrupted by carbon chains. Appropriate molecules are accessible by chain extension reactions and are preferably used in the form of silicone-in-water emulsions.
  • the silicone-in-water emulsions which can be used according to the invention can be prepared by known processes, as disclosed, for example, in US Pat. No. 5,998,537 and EP 0 874 017 A1.
  • this preparation process comprises the emulsifying mixture of components, one of which contains at least one polysiloxane, the other of which contains at least one organosilicon material which reacts with the polysiloxane in a chain extension reaction, wherein at least one metal ion-containing catalyst for the chain extension reaction, at least one surfactant and Water are present.
  • the chain extension reaction may also include the reaction of an Si-OH group (e.g., a hydroxy-terminated polysiloxane) with an alkoxy group (e.g., alkoxysilanes, silicates, or alkoxysiloxanes) in the presence of a metal-containing catalyst to form polysiloxanes.
  • an Si-OH group e.g., a hydroxy-terminated polysiloxane
  • an alkoxy group e.g., alkoxysilanes, silicates, or alkoxysiloxanes
  • the polysiloxanes used in the chain extension reaction comprise a substantially linear polymer of the following structure:
  • each R independently represents a hydrocarbon radical having up to 20 carbon atoms, preferably having 1 to 6 carbon atoms, such as an alkyl group (for example, methyl, ethyl, propyl or butyl), an aryl group (for example, phenyl), or group required for the chain extension reaction ("reactive group", for example Si-bonded H atoms, aliphatically unsaturated groups such as vinyl, allyl or hexenyl, hydroxy, alkoxy such as methoxy, ethoxy or propoxy, alkoxy-alkoxy, acetoxy, amino etc. with the proviso that there are on average one to two reactive groups per polymer, n is a positive number> 1.
  • n is numbers describing polysiloxanes having viscosities between 1 and 1,000,000 mm 2 / s, more preferably viscosities between 1,000 and 100,000 mm 2 / s.
  • the polysiloxanes may be branched to a low degree (for example, ⁇ 2 mol% of the siloxane units), but the polymers are substantially linear, more preferably fully linear.
  • substituents R may in turn be substituted, for example with N-containing groups (for example amino groups), epoxy groups, S-containing groups, Si-containing groups, O-containing groups, etc.
  • N-containing groups for example amino groups
  • epoxy groups for example amino groups
  • S-containing groups for example epoxy groups
  • Si-containing groups for example epoxy groups
  • O-containing groups etc.
  • at least 80% of the radicals R are alkyl radicals, especially preferably methyl groups.
  • the organosilicone material that reacts with the polysiloxane in the chain extension reaction may be either a second polysiloxane or a molecule that acts as a chain extender.
  • the organosilicone material is a polysiloxane, it has the above-mentioned general structure. In these cases, one polysiloxane in the reaction has (at least) one reactive group, and a second polysiloxane has (at least) a second reactive group that reacts with the first.
  • the organosilicone material comprises a chain-extending agent
  • it may be a material such as a silane, a siloxane (e.g. disiloxane or trisiloxane) or a silazane.
  • a composition comprising a polysiloxane according to the general structure described above having at least one Si-OH group can be chain extended by reacting with an alkoxysilane (for example, a dialkoxysilane or trialkoxysilane) in the presence of tin or titanium-containing catalysts is reacted.
  • an alkoxysilane for example, a dialkoxysilane or trialkoxysilane
  • the metal-containing catalysts in the chain extension reaction are usually specific for a particular reaction.
  • Such catalysts are known in the art and include, for example, metals such as platinum, rhodium, tin, titanium, copper, lead, etc.
  • a polysiloxane having at least one aliphatically unsaturated group, preferably an end group is reacted with an organosilicone material
  • a hydrosilylation catalyst which is a siloxane or polysiloxane having at least one (preferably terminal) Si-H group.
  • the polysiloxane has at least one aliphatically unsaturated group and satisfies the general formula given above in which R and n are as defined above, with an average of between 1 and 2 groups R having one aliphatically unsaturated group per polymer.
  • the organosilicone material having at least one Si-H group preferably has the above-mentioned structure, wherein R and n are as defined above, and wherein Average between 1 and 2 groups R is hydrogen and n is 0 or a positive integer.
  • This material may be a polymer or a low molecular weight material such as a siloxane (for example, a disiloxane or a trisiloxane).
  • a siloxane for example, a disiloxane or a trisiloxane
  • the polysiloxane having at least one aliphatically unsaturated group and the organosilicon material having at least one Si-H group react in the presence of a hydrosilylation catalyst.
  • a hydrosilylation catalyst include, for example, platinum and rhodium-containing materials.
  • the catalysts may take any known form, for example platinum or rhodium coated on support materials (such as silica gel or activated carbon) or other suitable compounds such as platinum chloride, salts of platinum or chloroplatinic acids.
  • Chloroplatinic acid either as a commercially available hexahydrate or in anhydrous form is a preferred catalyst because of good dispersibility in organosilicone systems and low color change.
  • a polysiloxane having at least one Si-OH group, preferably an end group is reacted with an organosilicone material having at least one alkoxy group, preferably a siloxane having at least one Si-OR group or an alkoxysilane having at least two alkoxy groups ,
  • the catalyst used is again a metal-containing catalyst.
  • organometallic compounds such as organotin salts, titanates or titanium chelates or complexes.
  • organometallic compounds such as organotin salts, titanates or titanium chelates or complexes.
  • organometallic compounds such as organotin salts, titanates or titanium chelates or complexes.
  • organometallic compounds such as organotin salts, titanates or titanium chelates or complexes.
  • organometallic compounds such as organotin salts, titanates or titanium chelates or complexes.
  • organometallic compounds such as organotin salts, titanates or titanium chelates or complexes.
  • examples include stannous octoate, dibutyltin dilaurate, dibutyltin diacetate, dimethyltin dineodecanoate, dibutyltin dimethoxide, isobutyltin triceroate, dimethyltin dibutyrate, dimethyltin dineo
  • Agents which are likewise preferred according to the invention are characterized in that they contain at least one silicone of the formula (Si-5) R 3 Si [O-SiR 2] ⁇ - (CH 2 ) n - [O-SiR 2 ] y -O-SiR 3 (Si-5),
  • R is identical or different radicals from the group -H, -phenyl, -benzyl, -CH 2 - CH (CH 3 ) Ph, the d. 20 -alkyl radicals, preferably -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 , -CH (CH 3 ) 2 , -CH 2 CH 2 CH 2 H 3 , -CH 2 CH (CH 3 ) 2 , -CH (CH 3 ) CH 2 CH 3 , -C (CH 3 ) 3 , x or y is a number from 0 to 200, preferably from 0 to 10, more preferably from 0 to 7 and in particular 0, 1, 2, 3, 4, 5 or 6, and n is a number from 0 to 10, preferably from 1 to 8 and especially for 2, 3, 4, 5, 6.
  • the silicones are preferably water-soluble. According to preferred means of the embodiment with a silicone are characterized in that the silicone is water-soluble.
  • Corresponding hydrophilic silicones are selected, for example, from the compounds of the formulas (Si-6) and / or (Si-7).
  • Particularly preferred water-soluble silicone-based surfactants are selected from the group of dimethicone copolyols which are preferably alkoxylated, in particular polyethoxylated or polypropoxylated.
  • Dimethicone copolyols are understood according to the invention as meaning preferably polyoxyalkylene-modified dimethylpolysiloxanes of the general formulas (Si-6) or (Si-7):
  • radical R is a hydrogen atom, an alkyl group having 1 to 12 C atoms, an alkoxy group having 1 to 12 C atoms or a hydroxyl group
  • radicals R 'and R denote alkyl groups having 1 to 12 C atoms
  • x represents an integer from 1 to 100, preferably from 20 to 30
  • y represents an integer from 1 to 20, preferably from 2 to 10
  • a and b are integers from 0 to 50, preferably from 10 to 30.
  • dimethicone copolyols according to the invention are, for example, the products sold commercially under the trade name SILWET (Union Carbide Corporation) and DOW CORNING (Dow).
  • Dimethicone copolyols particularly preferred according to the invention are Dow Corning 190 and Dow Corning 193 (Dow).
  • agents A and / or B - or A1 and / or A2 and / or B - may contain at least one protein hydrolyzate.
  • the protein hydrolysates are product mixtures obtained by acid, alkaline or enzymatically catalyzed degradation of proteins (proteins).
  • protein hydrolysates of both vegetable and animal origin can be used.
  • Animal protein hydrolysates are, for example, elastin, collagen, keratin, silk and milk protein hydrolysates, which may also be present in the form of salts.
  • Such products are, for example, under the trademarks keratin DEC ® (Vincience) Dehylan ® (Cognis), Promois® ® (Interorgana) Collapuron ® (Cognis), Nutrilan® ® (Cognis), Gelita-Sol ® (German Gelatinefabriken Stoess & Co) distributed Lexein ® (Inolex) and kerasol tm ® (Croda).
  • Preferred according to the invention is the use of protein hydrolysates of plant origin, eg. Soybean, almond, rice, pea, potato and wheat protein hydrolysates.
  • Such products are, for example, under the trademarks Gluadin ® (Cognis), diamine ® (Diamalt) ® (Inolex) and Crotein ® (Croda) available.
  • the use of the protein hydrolysates is preferred as such, amino acid mixtures or individual amino acids obtained otherwise, such as, for example, arginine, lysine, histidine or pyrroglutamic acid, may also be used in their place.
  • derivatives of protein hydrolysates for example in the form of their fatty acid condensation products.
  • Such products are marketed for example under the names Lamepon ® (Cognis), Gluadin ® (Cognis), Lexein ® (Inolex), Crolastin ® (Croda) or Crotein ® (Croda).
  • the protein hydrolysates in an amount of 0.05 to 5 wt .-%, particularly preferably from 0.5 to 2.0 wt .-%, each based on the weight of the ready-to-use agent included.
  • agents A and / or B - or A1 and / or A2 and / or B - additionally comprise at least one cationic and / or at least one amphoteric polymer.
  • Cationic polymers are polymers which have groups in the main and / or side chain which may be “temporary” or “permanent” cationic.
  • “permanently cationic” refers to those polymers which have a cationic group independently of the pH of the agents, which are generally polymers which contain a quaternary nitrogen atom, for example in the form of an ammonium group
  • Preferred cationic groups are quaternary ammonium groups .
  • . are bound 4 hydrocarbon group to a synthesized from acrylic acid, methacrylic acid or derivatives thereof, polymer backbone, have been found to be particularly suitable homopolymers of the general formula (P1).
  • R 18 -H or -CH 3
  • RR 1199 , RR 2200 and RR 2211 of the FFoorrmmeell ((PP11)) represent methyl groups
  • Suitable physiologically tolerated counterions X 'of the formula (P1) are, for example, halide ions, sulfate ions, phosphate ions, methosulfate ions and organic ions such as lactate, citrate, tartrate and acetate ions. Preference is given to halide ions, in particular chloride.
  • a particularly suitable homopolymer is, if desired, crosslinked, poly (methacryloyloxyethyltrimethylammonium chloride) with the INCI name Polyquaternium-37.
  • the crosslinking can be carried out with the aid of poly olefinically unsaturated compounds, for example divinylbenzene, tetraallyloxyethane, methylenebisacrylamide, diallyl ether, polyallylpolyglyceryl ethers, or allyl ethers of sugars or sugar derivatives such as erythritol, pentaerythritol, arabitol, mannitol, sorbitol, sucrose or glucose.
  • Methylenebisacrylamide is a preferred crosslinking agent.
  • the homopolymer is preferably used in the form of a nonaqueous polymer dispersion which should not have a polymer content of less than 30% by weight.
  • Such polymer dispersions are (under the names Salcare ® SC 95 about 50% polymer content, additional components: mineral oil (INCI name: Mineral Oil) and tridecyl-polyoxypropylene-polyoxyethylene-ether (INCI name: PPG-1 trideceth-6) ) and Salcare ® SC 96 (about 50% polymer content, additional components: mixture of diesters of propylene glycol with a mixture of caprylic and capric acid (INCI name: propylene glycol Dicaprylate / Dicaprate) and tridecyl polyoxypropylene-polyoxyethylene-ether (INCI Designation: PPG-1-trideceth-6)) are commercially available.
  • Copolymers with monomer units of the formula (III) contain, as nonionic monomer units, preferably acrylamide, methacrylamide, acrylic acid C-. 4- alkyl esters and methacrylic acid-d. 4- alkyl esters. Among these nonionic monomers, the acrylamide is particularly preferred. These copolymers can also be crosslinked, as described above in the case of the homopolymers. A copolymer preferred according to the invention is the crosslinked acrylamide-methacryloyloxyethyltrimethylammonium chloride copolymer.
  • Such copolymers in which the monomers are present in a weight ratio of about 20:80 are commercially available as approximately 50% non-aqueous polymer dispersion 92 under the name Salcare ® SC.
  • Other preferred cationic polymers are, for example, quaternized cellulose derivatives, such as are available under the names of Celquat ® and Polymer JR ® commercially.
  • the compounds Celquat ® H 100, Celquat ® L 200 and Polymer JR ® 400 are preferred quaternized cellulose derivatives, cationized honey, for example the commercial product Honeyquat ® 50, cationic guar derivatives, in particular under the trade name Cosmedia ® guar and Jaguar ® distributed products,
  • Polysiloxanes having quaternary groups such as the commercially available products Q2-7224 (manufactured by Dow Corning, a stabilized trimethylsilylamodimethicone), Dow Corning® 929 emulsion (containing a hydroxylamino-modified silicone, also referred to as amodimethicones), SM -2059 (manufacturer: General Electric), SLM-55067 (manufacturer: Wacker) and Abil ® -Quat 3270 and 3272 (manufacturer: Th Goldschmidt; diquaternary polydimethylsiloxanes, quaternium-80)., polymeric dimethyldiallylammonium salts and their copolymers with esters and amides of Acrylic acid and methacrylic acid. Under the names Merquat ® 100 (Poly (dimethyldiallylammonium chloride)) and Merquat ® 550 (dimethyldiallylammonium chloride
  • Such compounds are sold under the names Gafquat ® 734 and Gafquat ® 755 commercially,
  • Polyquaternium 2 e.g., Mirapol® A-15 from Rhodia
  • Polyquaternium 17 Polyquaternium 18 and
  • Polyquaternium 27 known polymers with quaternary nitrogen atoms in the polymer main chain. Can be used as cationic polymers are sold under the names Polyquaternium-24 (commercial product z. B. Quatrisoft ® LM 200), known polymers. , Gaffix ® VC 713 (manufactured by ISP): Also according to the invention can be used the copolymers of vinylpyrrolidone, such as the commercial products Copolymer 845 (ISP manufacturer) are Gafquat ® ASCP 1011, Gafquat ® HS 110, Luviquat ® 8155 and Luviquat ® MS 370 available are.
  • cationic polymers of the present invention are usually contain an amino group present at certain pH values as a quaternary ammonium group and hence cationic.
  • chitosan and its derivatives are preferred, such as for example, under the trade designations Hydagen ® CMF, Hydagen® ® HCMF, Kytamer ® PC and Chitolam ® NB / 101 are freely available commercially.
  • chitosans are deacetylated, in different degrees of deacetylation and varying degrees of degradation (molecular weights) are commercially available. Their preparation is, for example, in DE 44 40 625 A1 and described in DE 1 95 03 465 A1.
  • Particularly useful chitosans have a degree of deacetylation of at least 80% and a molecular weight of 5 '10 5 to 5' 10 6 (g / mol).
  • the chitosan must be converted into the salt form. This can be done by dissolving in dilute aqueous acids.
  • acids both mineral acids, e.g. Hydrochloric acid, sulfuric acid and phosphoric acid as well as organic acids, e.g. low molecular weight carboxylic acids, polycarboxylic acids and hydroxycarboxylic acids suitable.
  • organic acids e.g. low molecular weight carboxylic acids, polycarboxylic acids and hydroxycarboxylic acids suitable.
  • higher molecular weight alkyl sulfonic acids or alkyl sulfuric acids or organophosphoric acids can be used, provided that they have the required physiological compatibility.
  • Suitable acids for converting the chitosan into the salt form are e.g.
  • Acetic acid, glycolic acid, tartaric acid, malic acid, citric acid, lactic acid, 2-pyrrolidinone-5-carboxylic acid, benzoic acid or salicylic acid Preferred are low molecular weight hydroxycarboxylic acids such as e.g. Glycolic acid or lactic acid.
  • amphoteric polymers is understood as meaning those polymers which contain both free amino groups and free -COOH or SO 3 H groups in the molecule and are capable of forming internal salts, zwitterionic polymers having in the molecule quaternary ammonium groups and -COO ' Groups or -SO 3 ' groups, as well as Polymers containing -COOH groups or SO 3 H groups and quaternary ammonium groups.
  • the quaternary ammonium polymers mentioned in the list are preferably used according to the invention as amphoteric polymers.
  • amphopolymer suitable is the acrylic resin commercially available as Amphomer ®, which is a copolymer of tert-butylaminoethyl methacrylate, N- (1, 1, 3,3-tetramethylbutyl) -acrylamide and two or more monomers from the group of acrylic acid, Represents methacrylic acid and its simple esters.
  • Amphomer ® is a copolymer of tert-butylaminoethyl methacrylate, N- (1, 1, 3,3-tetramethylbutyl) -acrylamide and two or more monomers from the group of acrylic acid, Represents methacrylic acid and its simple esters.
  • Amphoteric and / or cationic polymers preferred according to the invention are those polymers in which a cationic group is derived from at least one of the following monomers:
  • R 1 -CH CR 2 -CO-Z- (C n H 2n ) -N (+) R 3 R 4 R 5 A () (M 1)
  • R 1 and R 2 independently of one another are hydrogen or a methyl group and R 3 , R 4 and R 5 independently of one another are alkyl groups having 1 to 4 carbon atoms, Z is an NH group or an oxygen atom, n is an integer of 2 to 5 and A () is the anion of an organic or inorganic acid,
  • R 6 and R 7 independently of one another represent a (C 1 to C 4 ) -alkyl group, in particular a methyl group and A "is the anion of an organic or inorganic acid.
  • the radicals R 3 , R 4 and R 5 in the formula (M 1) are preferably methyl groups, Z is preferably an NH group and A () preferably denotes a halide, methoxysulfate or ethoxysulfate ion. In this case, it is particularly preferable to use acrylamidopropyltrimethylammonium chloride as the monomer (M1).
  • a ' is preferably a halide ion, in particular chloride or bromide.
  • Preferred amphoteric polymers according to the invention are polymers whose anionic group is derived from at least one monomer of the formula (M3)
  • R 8 -CH CR 9 -COOH (M 3 )
  • R 8 and R 9 are independently hydrogen or methyl groups.
  • acrylic acid is used for the amphoteric polymers preferred according to the invention.
  • amphoteric polymers are copolymers of at least one monomer (M 1) or (M2) with the monomer (M3), in particular copolymers of the monomers (M2) and (M3).
  • amphoteric polymers are copolymers of diallyl dimethyl ammonium chloride and acrylic acid. These copolymers are sold under the INCI name Polyquaternium-22, among others, with the trade name Merquat ® 280 (Nalco).
  • R 10 and R 11 are independently hydrogen or methyl groups and R 12 is a hydrogen atom or a (C 1 to C 8 ) alkyl group.
  • comonomer based on a comonomer are terpolymers of diallyldimethylammonium chloride, acrylamide and acrylic acid. These copolymers are marketed ® under the INCI name Polyquaternium-39, among others, with the trade name Merquat Plus 3330 (Nalco).
  • amphoteric polymers are those polymers which are composed essentially
  • R 1 -CH CR 2 -CO-Z- (C n H 2n ) -N (+) R 2 R 3 R 4 A () (M 1)
  • R 1 and R 2 independently of one another are hydrogen or a methyl group and R 3 , R 4 and R 5 are each independently alkyl groups having 1 to 4 carbon atoms, Z is an NH group or an oxygen atom, n is an integer of 2 to 5 and A () is the anion of an organic or inorganic acid and
  • R 8 -CH CR 9 -COOH (M 3 )
  • R 8 and R 9 are independently hydrogen or methyl groups.
  • agent A and / or in the agent B additionally contain at least one developer component and optionally at least one coupler component as oxidation dye precursors.
  • agent A and / or in the agent B additionally contain at least one developer component and optionally at least one coupler component as oxidation dye precursors.
  • a preferred kit according to the invention is characterized in that the agents A - and A1 and A2 - and B are free of developer-type oxidation dye precursors.
  • G 1 is a hydrogen atom, a (C 1 to C 4 ) -alkyl radical, a (C 1 to C 4 ) -
  • Monohydroxyalkyl a (C 2 to C 4 ) polyhydroxyalkyl, a (C 1 to C 4 ) alkoxy (C- 1 to
  • G 2 is a hydrogen atom, a (C 1 to C 4 ) -alkyl radical, a (C 1 to C 4 ) -
  • Monohydroxyalkyl a (C 2 to C 4 ) polyhydroxyalkyl, a (C 1 to C 4 ) alkoxy (C- 1 to
  • G 3 represents a hydrogen atom, a halogen atom such as a chlorine, bromine, iodine or fluorine atom, a (C 1 to C 4 ) alkyl radical, a (C 1 to C 4 ) monohydroxyalkyl radical, a (C 2 to C 4 ) -
  • Polyhydroxyalkyl radical a (C 1 to C 4 ) -hydroxyalkoxy radical, a (C 1 to C 4 ) - Acetylaminoalkoxyrest, alkoxy Mesylamino- a (Ci to C 4) or a (C 1 to C 4) -
  • G 4 represents a hydrogen atom, a halogen atom or a (C 1 to C 4 ) -alkyl radical or, when G 3 and G 4 are ortho to each other, they may together form a bridging ⁇ , ⁇ -alkylenedioxy group, such as, for example, an ethylenedioxy group.
  • Particularly preferred p-phenylenediamines of formula (E1) are selected from one or more compounds of the group formed from p-phenylenediamine, p-toluenediamine, 2-chloro-p-phenylenediamine, 2,3-dimethyl-p-phenylenediamine , 2,6-dimethyl-p-phenylenediamine, 2,6-diethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, N, N-dimethyl-p-phenylenediamine, N, N-diethyl-p-phenylenediamine , N, N-dipropyl-p-phenylenediamine, 4-amino-3-methyl- (N, N-diethyl) -aniline, N, N-bis ( ⁇ -hydroxyethyl) -p-phenylenediamine, 4-N, N Bis ( ⁇ -hydroxyethyl) amino-2-methylaniline,
  • Methoxyethyl) -p-phenylenediamine N- (4-amino-3-methylphenyl) -N- [3- (1H-imidazol-1-yl) propyl] amine, 5,8-diaminobenzo-1, 4-dioxane, and their physiologically acceptable salts.
  • Very particular preferred p-phenylenediamine derivatives of the formula (E1) according to the invention are selected from at least one compound of the group p-phenylenediamine, p-toluenediamine, 2- ( ⁇ -hydroxyethyl) -p-phenylenediamine, 2- ( ⁇ , ⁇ -dihydroxyethyl) - p-phenylenediamine, N, N-bis- ( ⁇ -hydroxyethyl) -p-phenylenediamine, N- (4-amino-3-methylphenyl) -N- [3- (1 H -imidazol-1-yl) propyl] amine , as well as the physiologically acceptable salts of these compounds.
  • developer component compounds which contain at least two aromatic nuclei which are substituted by amino and / or hydroxyl groups.
  • binuclear developer components which can be used in the dyeing compositions according to the invention, mention may be made in particular of the compounds corresponding to the following formula (E2) and their physiologically tolerated salts: in which:
  • Z 1 and Z 2 independently of one another represent a hydroxyl or NH 2 radical which is optionally substituted by a (C 1 to C 4 ) -alkyl radical, by a (C 1 to C 4 ) -hydroxyalkyl radical and / or by a bridging Y or which is optionally part of a bridging ring system
  • the bridge Y is an alkylene group having 1 to 14 carbon atoms, such as a linear or branched alkylene chain or an alkylene ring, which is one or more nitrogen-containing groups and / or one or more heteroatoms such as oxygen , Sulfur or nitrogen atoms may be interrupted or terminated and may be substituted by one or more hydroxyl or (C 1 to C 8 ) alkoxy, or a direct bond
  • the bridge Y is an alkylene group having 1 to 14 carbon atoms, such as a linear or branched alkylene chain or an alkylene ring, which is one or more nitrogen-containing groups and / or
  • G 5 and G 6 independently of one another represent a hydrogen or halogen atom, a (C 1 to C 4 ) -alkyl radical, a (C 1 to C 4 ) -monohydroxyalkyl radical, a (C 2 to C 4 ) -polyhydroxyalkyl radical, a ( C 1 to C 4 ) -aminoalkyl radical or a direct compound for bridging Y, G 7 , G 8 , G 9 , G 10 , G 11 and G 12 are each independently a hydrogen atom, a direct bond to the bridge Y or a (C 1 to C 4 ) -alkyl radical, with the proviso that the compounds of the formula (E2) contain only one bridge Y per molecule.
  • Preferred binuclear developer components of the formula (E2) are in particular selected from at least one of the following compounds: N, N'-bis- ( ⁇ -hydroxyethyl) -N, N'-bis- (4'-aminophenyl) -1,3-diamino -propan-2-ol, N, N'-bis ( ⁇ -hydroxyethyl) -N, N'-bis (4'-aminophenyl) ethylenediamine, N, N'-bis (4'-aminophenyl) - tetramethylenediamine, N, N'-bis ( ⁇ -hydroxyethyl) -N, N'-bis (4'-aminophenyl) tetramethylenediamine, N, N'-bis (4- (methylamino) phenyl) tetramethylenediamine, N , N'-diethyl-N, N'-bis (4'-amino-3'-methylphenyl) -ethylenediamine
  • Very particularly preferred binuclear developer components of the formula (E2) are selected from N, N'-bis ( ⁇ -hydroxyethyl) -N, N'-bis (4-aminophenyl) -1,3-diamino-propan-2-ol , Bis (2-hydroxy-5-aminophenyl) ethane, 1, 3-bis (2,5-diaminophenoxy) -propan-2-ol, N, N'-bis (4-aminophenyl) -1, 4-diazacycloheptane, 1, 10-bis (2,5-diaminophenyl) -1, 4,7,10-tetraoxadecane or one of the physiologically acceptable salts of these compounds.
  • p-aminophenol derivatives of the formula (E3) it may be preferred according to the invention to use as the developer component a p-aminophenol derivative or one of its physiologically tolerable salts. Particular preference is given to p-aminophenol derivatives of the formula (E3)
  • G 13 represents a hydrogen atom, a halogen atom, a (C 1 to C 4 ) -alkyl radical, a (C 1 to C 4 ) -
  • Monohydroxyalkylrest a (C 2 to C 4 ) polyhydroxyalkyl, a (Ci to C 4 ) alkoxy (Ci to
  • G 14 is a hydrogen or halogen atom, a (C 1 to C 4 ) -alkyl radical, a (C 1 to C 4 ) -
  • Monohydroxyalkyl a (C 2 to C 4 ) polyhydroxyalkyl, a (C 1 to C 4 ) alkoxy (C- 1 to
  • G 15 is hydrogen, a (C 1 to C 4 ) -alkyl radical, a (C 1 to C 4 ) monohydroxyalkyl radical, a (C 2 to C 4 ) -polyhydroxyalkyl radical, a phenyl radical or a benzyl radical, and
  • G 16 is hydrogen or a halogen atom.
  • p-aminophenols of the formula (E3) are p-aminophenol, N-methyl-p-aminophenol, 4-amino-3-methylphenol, 4-amino-3-fluorophenol, 2-hydroxymethylannino-4-aminophenol, 4 -Amino-3-hydroxynethylphenol, 4-amino-2- ( ⁇ -hydroxyethoxy) -phenol, 4-amino-2-methylphenol, 4-amino-2-hydroxynethylphenol, 4-amino-2-nethoxynethylphenol, 4-amino -2-amino-ethyl-phenol, 4-amino-2- ( ⁇ -hydroxyethyl-amino-n-n-ethyl) -phenol, 4-amino-2- ( ⁇ , ⁇ -dihydroxy-ethyl) -phenol, 4-amino-2-fluorophenol, 4-amino-2-fluorophenol, 4-amino-2- ( ⁇ , ⁇ -dihydroxy-ethyl
  • Very particularly preferred compounds of the formula (E3) are p-aminophenol, 4-amino-3-methylphenol, 4-amino-2-aminomethylphenol, 4-amino-2- ( ⁇ , ⁇ -dihydroxyethyl) phenol and Amino-2- (diethylaminomethyl) phenol.
  • the developer component may be selected from o-aminophenol and its derivatives such as 2-amino-4-methylphenol, 2-amino-5-methylphenol or 2-amino-4-chlorophenol.
  • the developer component may be selected from heterocyclic developer components, such as pyrimidine derivatives, pyrazole derivatives, pyrazolopyrimidine derivatives or their physiologically acceptable salts.
  • heterocyclic developer components such as pyrimidine derivatives, pyrazole derivatives, pyrazolopyrimidine derivatives or their physiologically acceptable salts.
  • Preferred pyrimidine derivatives are selected according to the invention from compounds of the formula (E4) or their physiologically tolerated salts,
  • G 17 , G 18 and G 19 independently of one another represent a hydrogen atom, a hydroxy group, a (C 1 to C 4 ) -alkoxy group or an amino group and
  • G 20 represents a hydroxy group or a group -NG 21 G 22 , in which G 21 and G 22 independently of one another represent a hydrogen atom, a (C 1 to C 4 ) -alkyl group, a (C 1 to C 4 )
  • Particularly preferred pyrimidine derivatives are in particular the compounds 2,4,5,6-tetraaminopyrimidine, 4-hydroxy-2,5,6-triaminopyrinnidine, 2-hydroxy-4,5,6-triaminopyrinnidine, 2-dimethyl-4-amino , 5,6-triaminopyrinnidine, 2,4-dihydroxy-5,6-diaminopyrinnidine and 2,5,6-triaminopyrinnidine.
  • Preferred pyrazole derivatives are selected according to the invention from compounds of the formula (E5),
  • G, G, G independently of one another represent a hydrogen atom, a (C 1 to C 4 ) -
  • Alkyl group a (Ci to C 4 ) -Monohydroxyalkyl distr, a (C 2 to C 4 ) polyhydroxyalkyl group, an optionally substituted aryl group or an optionally substituted aryl (Ci to
  • G 26 may additionally be a group -NH 2 in addition to the abovementioned groups,
  • G 26 represents a hydrogen atom, a (C 1 to C 4 ) -alkyl group, a (C 1 to C 4 ) -
  • G 27 represents a hydrogen atom, an optionally substituted aryl group, a (Ci to C 4 ) -
  • the radical -NG G binds to the 5-position and the radical G to the 3-position of the pyrazole cycle.
  • Particularly preferred pyrazole derivatives are in particular the compounds which are selected from 4,5-diamino-i-methylpyrazole, 4,5-diamino-1- ( ⁇ -hydroxyethyl) pyrazole, 3,4-diaminopyrazole, 4,5- Diamino-1- (4'-chlorobenzyl) pyrazole, 4,5-diamino-1,3-dimethylpyrazole, 4,5-diamino-3-methyl-1-phenylpyrazole, 4,5-diamino-1-methyl-3 -phenylpyrazole, 4-amino-1,3-dimethyl-5-hydrazinopyrazole, 1- Benzyl 4,5-diamino-3-methylpyrazole, 4,5-diamino-3-tert-butyl-1-methylpyrazole, 4,5-diamino-1-tert-butyl-3-methylpyrazole, 4.5- Diamino-1- ( ⁇ -hydroxyeth
  • Preferred pyrazolopyrimidine derivatives are, in particular, the derivatives of the pyrazolo [1,5-a] pyrimidine of the following formula (E6) and their tautomeric forms, if a tautomeric equilibrium exists:
  • G, G and G, G are independently a hydrogen atom, a (C 1 to C 4) - alkyl radical, an aryl radical, a (Ci to C 4) monohydroxyalkyl, a (C 2 to C 4) - polyhydroxyalkyl a (Ci to C 4) alkoxy (Ci -C 4) alkyl, a (Ci to C 4) - aminoalkyl radical, which may be optionally protected by an acetyl ureide or a sulfonyl residue, a (Ci to C 4 ) -alkylamino- (C 1 to C 4 ) -alkyl radical, a di - [(C 1 to C 4 ) -alkyl] - (C 1 to C 4 ) -aminoalkyl radical, where the dialkyl radicals optionally have a carbon cycle or a heterocycle with Form 5 or 6 chain members, a (C 1 to C 4 ) monohydroxyalkyl or
  • pyrazolo [1, 5-a] pyrimidines of the above formula (E6) can be prepared as described in the literature by cyclization from an aminopyrazole or from hydrazine.
  • Very particularly preferred developer components are selected from at least one compound from the group formed from p-phenylenediamine, p-toluenediamine, 2- ( ⁇ -hydroxyethyl) -p-phenylenediamine, 2- ( ⁇ , ⁇ -dihydroxyethyl) -p phenylenediamine, N, N-bis ( ⁇ -hydroxyethyl) p-phenylenediamine, N- (4-amino-3-methylphenyl) -N- [3- (1 H -imidazol-1-yl) propyl] amine, N, N'-bis ( ⁇ -hydroxyethyl) -N, N'-bis (4-aminophenyl) -1, 3-diamino-propan-2-ol, bis (2-hydroxy-5-aminophenyl) - methane, 1,3-bis- (2,5-diaminophenoxy) -propan-2-ol, N, N'-bis (4-aminoph
  • Examples of (C 1 to C 4 ) -alkoxy radicals according to the invention are -OCH 3 , -OCH 2 CH 3 ,
  • a particularly preferred example of a (C 2 to C 4 ) polyhydroxyalkyl group is 1, 2
  • halogen atoms are F, Cl or Br atoms, Cl atoms are very particularly preferred
  • nitrogen-containing groups are in particular -NH 2 , (C 1 to C 4 ) -monoalkylannino groups,
  • Examples of (C 1 to C 4 ) -monoalkylamino groups are -NHCH 3 , -NHCH 2 CH 3 , -NHCH 2 CH 2 CH 3 ,
  • Examples of (C 1 to C 4 ) -dialkylamino groups are -N (CH 3 ) 2 , -N (CH 2 CH 3 ) 2 .
  • Examples of (C 1 to C 4 ) trialkylamino groups are -N + (CH 3 ) 3 , -N + (CH 3 ) 2 (CH 2 CH 3 ),
  • Examples of (C 1 to C 4 ) -hydroxyalkylamino radicals are -NH-CH 2 CH 2 OH, -NH-CH 2 CH 2 OH,
  • Examples of (C 1 to C 4 ) -alkoxy- (C 1 -C 4 ) -alkyl groups are the groups -CH 2 CH 2 -O-CH 3 ,
  • hydroxy (C 1 -C 4 ) -alkoxy radicals are -O-CH 2 OH, -O-CH 2 CH 2 OH, -O-CH 2 CH 2 CH 2 OH,
  • Examples of (C 1 to C 4 ) -acetylaminoalkoxy radicals are -O-CH 2 NHC (O) CH 3 , -O-CH 2 CH 2 NHC (O) CH 3 ,
  • Examples of (C 1 to C 4 ) -carbamoylanninoalkoxy radicals are -O-CH 2 CH 2 -NH-C (O) -NH 2 ,
  • Examples of (C 1 to C 4 ) -aminoalkyl radicals are -CH 2 NH 2 , -CH 2 CH 2 NH 2 , -CH 2 CH 2 CH 2 NH 2 ,
  • Examples of (C 1 to C 4 ) -cyanoalkyl radicals are -CH 2 CN 1 -CH 2 CH 2 CN 1 -CH 2 CH 2 CH 2 CN.
  • Examples of (C 1 to C 4 ) -hydroxyalkylamino (C 1 to C 4 ) -alkyl radicals are -CH 2 CH 2 NH-CH 2 CH 2 OH 1
  • di [(C 1 to C 4 ) hydroxyalkyl] amino (C 1 to C 4 ) alkyl radicals are -CH 2 CH 2 N (CH 2 CH 2 OH) 21
  • aryl groups is the phenyl group.
  • aryl (C 1 to C 4 ) alkyl groups are the benzyl group and the 2-phenylethyl group.
  • Coupler components do not form a significant color within the framework of the oxidative dyeing alone, but always require the presence of developer components. Therefore, it is preferred according to the invention that at least one coupler component is additionally used when using at least one developer component. Coupler components according to the invention allow at least one substitution of a chemical residue of the coupler by the oxidized form of the developer component. This forms a covalent bond between the coupler and the developer component. Couplers are preferably cyclic compounds which carry on cycle at least two groups selected from (i) optionally substituted amino groups and / or (ii) hydroxy groups. When the cyclic compound is a six-membered ring (preferably aromatic), said groups are preferably in ortho position or meta position to each other.
  • Coupler components according to the invention are preferably selected as at least one compound from one of the following classes:
  • o-aminophenol derivatives such as o-aminophenol
  • Naphthalene derivatives having at least one hydroxy group having at least one hydroxy group
  • Pyrazolone derivatives such as 1-phenyl-3-methylpyrazol-5-one,
  • Morpholine derivatives such as, for example, 6-hydroxybenzomorpholine or 6-aminobenzomorpholine,
  • m-aminophenols or derivatives thereof which can be used according to the invention are preferably selected from at least one compound of the formula (K1) and / or from at least one physiologically tolerated salt of a compound of the formula (K1),
  • G 1 and G 2 independently of one another represent a hydrogen atom, a (C 1 to C 4 ) -alkyl group, a (C 3 to C 6 ) -cycloalkyl group, a (C 2 to C 4 ) -alkenyl group, a (C 1 to C 4 ) Monohydroxyalkyl group, a (C 2 to C 4 ) polyhydroxyalkyl group, a (C 2 to C 4 ) perfluoroacyl group, an aryl (C 1 to C 6 ) alkyl group, an amino (C 1 to C 6 ) alkyl group, a (Ci to C 6 ) -Dialkylamino- (Ci to C 6 ) -alkyl distr or a (Ci to C 6 ) -alkoxy- (d to C 6 ) -alkyl distr, whereby G 1 and G 2 together with the nitrogen atom a five-membered can form a six-membered or seven-membered
  • G 3 and G 4 independently represent a hydrogen atom, a halogen atom, a (Ci to C 4) alkyl group, a (C 1 to C 4) alkoxy group, a hydroxy group, a (C 1 to C 4) - monohydroxyalkyl a (C 2 to C 4 ) polyhydroxyalkyl group, a hydroxy (C 1 to C 4 ) alkoxy group, a (C 1 to C 6 ) alkoxy (C 2 to C 6 ) alkoxy group, an aryl group or a heteroaryl.
  • Particularly preferred m-aminophenol coupler components are selected from at least one compound selected from the group consisting of m-aminophenol, 5-amino-2-methylphenol, N-cyclopentyl-3-aminophenol, 3-amino-2-chloro-6 -methylphenol, 2-hydroxy-4-aminophenoxyethanol, 2,6-dimethyl-3-aminophenol, S-trifluoroacetylamino ⁇ -chloro- ⁇ -methylphenol, 5-amino-4-chloro-2-methylphenol, 5-amino-4- methoxy-2-methylphenol, 5- (2'-hydroxyethyl) amino-2-methylphenol, 3- (diethylamino) -phenol, N-cyclopentyl-3-aminophenol, 1, 3-dihydroxy-5- (methylamino) -benzene , 3-ethylamino-4-methylphenol, 2,4-dichloro-3-aminophenol and the physiologically acceptable salts of all the compounds mentioned above.
  • m-diaminobenzenes or derivatives thereof which can be used according to the invention are preferably selected from at least one compound of the formula (K2) and / or from at least one physiologically tolerated salt of a compound of the formula (K2),
  • G 5 , G 6 , G 7 and G 8 independently of one another represent a hydrogen atom, a (C 1 to C 4 ) -alkyl group, a (C 3 to C 6 ) -cycloalkyl group, a (C 2 to C 4 ) -alkenyl group , a (Ci to C 4) monohydroxyalkyl, a (C 2 to C 4) - polyhydroxyalkyl group, a (Ci to C 4) alkoxy alkyl (Ci to C 4), aryl (Ci to C 4) alkyl group, a heteroaryl (Ci to C 4 ) alkyl group, a (C 2 to C 4 ) perfluoroacyl group, or together with the nitrogen atom form a five-membered or six-membered heterocycle
  • G 9 and G 10 independently represent a hydrogen atom, a halogen atom, a
  • (C 1 to C 4 ) alkyl group an ⁇ - (2,4-diaminophenyl) - (C 1 to C 4 ) alkyl group, an ⁇ - (2,4-diaminophenyloxy) - (d to C 4 ) alkoxy group, a (C 1 to C 4 ) alkoxy group, a hydroxy group, a (C 1 to C 4 ) alkoxy (C 2 to C 4 ) alkoxy group, an aryl group, a heteroaryl group, a (C 1 to C 4 ) monohydroxyalkyl group , a (C 2 to C 4 ) polyhydroxyalkyl group, a hydroxy (C 1 to C 4 ) alkoxy group.
  • Particularly preferred m-diaminobenzene coupler components are selected from at least one compound from the group formed from m-phenylenediamine, 2- (2,4-diamino-phenoxy) ethanol, 1, 3-bis (2,4-diaminophenoxy) propane, 1-methoxy-2-amino-4- (2'-hydroxyethylamino) benzene, 1, 3-bis (2,4-diaminophenyl) propane, 2,6-bis (2'-hydroxyethylamino) -1- methylbenzene, 2- ( ⁇ 3 - [(2-hydroxyethyl) amino] -4-methoxy-5-methylphenyl ⁇ amino) ethanol, 2 - ( ⁇ 3 - [(2-hydroxyethyl) amino] -2-methoxy-5- methylphenyl ⁇ amino) ethanol, 2 - ( ⁇ 3 - [(2-hydroxyethyl) amino] -4,5-dimethylphenyl ⁇ amino) ethanol, 2- [3-
  • o-diaminobenzenes or their derivatives which can be used according to the invention are preferably selected from at least one compound of the formula (K3) and / or from at least one physiologically tolerated salt of a compound of the formula (K3),
  • G 11, G 12, G 13 and G 14 are independently a hydrogen atom, a (Ci to C 4) - alkyl group, a (C 3 -C 6) cycloalkyl group, a (C 2 to C 4) alkenyl group, a (Ci to C 4) monohydroxyalkyl, a (C 2 to C 4) - polyhydroxyalkyl group, a (C -C 4) alkoxy (Ci -C 4) alkyl group, an aryl (Ci to C 4) - alkyl group, a heteroaryl (Ci to C 4 ) alkyl group, a (C 2 to C 4 ) perfluoroacyl group, or together with the nitrogen atom form a five-membered or six-membered heterocycle
  • G 15 and G 16 independently represent a hydrogen atom, a halogen atom, a carboxyl group, a (C 1 to C 4 ) alkyl group, a (C 1 to C 4 ) alkoxy group, a hydroxy group, a (C 1 to C 4 ) monohydroxyalkyl, a (C 2 to C 4) -polyhydroxyalkyl group, a hydroxy (C- ⁇ -C 4) - alkoxy group.
  • Particularly preferred o-diaminobenzene coupler components are selected from at least one compound selected from the group consisting of 3,4-diaminobenzoic acid and 2,3-diamino-1-methylbenzene and the physiologically acceptable salts of all of the aforementioned compounds.
  • Preferred di- or trihydroxybenzenes and their derivatives are selected from at least one compound of the group formed from resorcinol, resorcinol monomethyl ether, 2-methylresorcinol, 5-methylresorcinol, 2,5-dimethylresorcinol, 2-chlororesorcinol, 4-chlororesorcinol, pyrogallol and 1 , 2,4-trihydroxybenzene.
  • the pyridine derivatives which can be used according to the invention are preferably selected from at least one compound of the formula (K4) and / or from at least one physiologically tolerable salt of a compound of the formula (K4),
  • G 17 and G 18 independently of one another represent a hydroxy group or a group -NG 21 G 22 , in which G 21 and G 22 independently of one another represent a hydrogen atom, a (C 1 to C 4 ) -alkyl group, a (C 3 to C 6 ) -cycloalkyl group, a (C 2 to C 4 ) - Alkenyl group, an aryl group, a (C 1 to C 4 ) monohydroxyalkyl group, a (C 2 to C 4 ) polyhydroxyalkyl group, a (Ci to C 4 ) alkoxy (d to C 4 ) alkyl group, an aryl ( C 1 to C 4 ) alkyl group, a heteroaryl (C 1 to C 4 ) alkyl group,
  • G 19 and G 20 independently of one another represent a hydrogen atom, a halogen atom, a (C 1 to C 4 ) -alkyl group or a (C 1 to C 4 ) -alkoxy group.
  • radicals G 17 and G 18 are in the ortho position or in the meta position relative to one another.
  • Particularly preferred pyridine derivatives are selected from at least one compound of the group formed from 2,6-dihydroxypyridine, 2-amino-3-hydroxypyridine, 2-amino-5-chloro-3-hydroxypyridine, 3-amino-2-methylamino 6-methoxypyridine, 2,6-dihydroxy-3,4-dimethylpyridine, 2,6-dihydroxy-4-methylpyridine, 2,6-diaminopyridine, 2,3-diamino-6-methoxypyridine, 3,5-diamino-2, 6-dimethoxypyridine, 3,4-diaminopyridine, 2- (2-methoxyethyl) amino-3-amino-6-methoxypyridine, 2- (4'-methoxyphenyl) amino-3-aminopyridine, and the physiologically acceptable salts of the aforementioned compounds.
  • Preferred naphthalene derivatives having at least one hydroxy group are selected from at least one compound of the group formed from 1-naphthol, 2-methyl-1-naphthol, 2-hydroxymethyl-1-naphthol, 2-hydroxyethyl-1-naphthol, 1, 3 Dihydroxynaphthalene, 1, 5-dihydroxynaphthalene, 1, 6-dihydroxynaphthalene, 1, 7-dihydroxynaphthalene, 1, 8-dihydroxynaphthalene, 2,7-dihydroxynaphthalene and 2,3-dihydroxynaphthalene.
  • the indole derivatives which can be used according to the invention are preferably selected from at least one compound of the formula (K5) and / or from at least one physiologically tolerated salt of a compound of the formula (K5),
  • G 23 represents a hydrogen atom, a (Ci to C 4) alkyl group, a (C 3 -C 6) cycloalkyl group, a (C 2 to C 4) alkenyl group, a (Ci to C 4) monohydroxyalkyl, a (C 2 to C 4 ) -
  • G represents a hydroxy group or a group -NG G in which G and G independently of one another represent a hydrogen atom, a (C 1 to C 4 ) -alkyl group, a (C 3 to C 6 ) -cycloalkyl group, a (C 2 to C 4) alkenyl group, a (Ci to C 4) monohydroxyalkyl, a (C 2 to C 4) polyhydroxyalkyl group,
  • G 25 is a hydrogen atom, a halogen atom or a (C 1 to C 4 ) -alkyl group, with the proviso that G 24 in the meta position or ortho position to the structural fragment NG 23 of the
  • Particularly preferred indole derivatives are selected from at least one compound of the group which is formed from 4-hydroxyindole, 6-hydroxyindole and 7-hydroxyindole and the physiologically acceptable salts of the abovementioned compounds.
  • the indoline derivatives which can be used according to the invention are preferably selected from at least one compound of the formula (K6) and / or from at least one physiologically tolerable salt of a compound of the formula (K6),
  • ⁇ 28 represents a hydrogen atom, a (C 1 to C 4 ) alkyl group, a (C 3 to C 6 ) cycloalkyl group, a (C 2 to C 4 ) alkenyl group, a (C 1 to C 4 ) monohydroxyalkyl group , a (C 2 to C 4 ) polyhydroxyalkyl group, an aryl (C 1 to C 4 ) alkyl group,
  • G represents a hydroxy group or a group -NG G, in which G and G independently of one another represent a hydrogen atom, a (C 1 to C 4 ) -alkyl group, a (C 3 to C 6 ) -cycloalkyl group, a (C 2 to C 4 ) alkenyl group, a (C 1 to C 4 ) monohydroxyalkyl group, a (C 2 to C 4 ) polyhydroxyalkyl group,
  • G 30 is a hydrogen atom, a halogen atom or a (C 1 to C 4 ) alkyl group, with the proviso that G 29 in the meta position or ortho position to the structural fragment NG 28 of
  • Particularly preferred indoline derivatives are selected from at least one compound of the group formed from 4-hydroxyindoline, 6-hydroxyindoline and 7-hydroxyindoline and the physiologically acceptable salts of the aforementioned compounds.
  • Preferred pyrimidine derivatives are selected from at least one compound of the group formed from 4,6-diaminopyrinnidine, 4-amino-2,6-dihydroxypyrimidine, 2,4-diamino-6-hydroxypyrimidine, 2,4,6-trihydroxypyrimidine, 2 -Amino-4-niethylpyrinnidin, 2-amino-4-hydroxy-6-methylpyrimidine and 4,6-dihydroxy-2-methylpyrinnidin and the physiologically acceptable salts of the aforementioned compounds.
  • Coupler components which are particularly preferred according to the invention are selected from m-aminophenol, 5-amino-2-naphthylphenol, 3-naphthan-2-chloro-6-naphthylphenol, 2-hydroxy-4-aminophenoxyethanol, 5-amino-4-chloro-2 N-ethylphenol, 5- (2'-hydroxyethyl) amino-2-naphthylphenol, 2,4-dichloro-3-aminophenol, o-aminophenol, m-phenylenediamine, 2- (2,4-diaminophenoxy) ethanol, 1, 3 Bis (2,4-diaminophenoxy) propane, 1-methoxy-2-amino-4- (2'-hydroxyethylannino) benzene, 1, 3-bis (2,4-diaminophenyl) propane, 2,6-bis (2 '-hydroxyethylamino) -1-ethylbenzene, 2 - ( ⁇ 3
  • the coupler components are preferably used in an amount of 0.005 to 20% by weight, preferably 0.1 to 5% by weight, based in each case on the ready-to-use mixture of agent A, agent B and, if appropriate, agent C.
  • developer components and coupler components are generally used in approximately molar amounts to each other.
  • a certain excess of individual oxidation dye precursors is not disadvantageous, so that developer components and coupler components in a molar ratio of 1: 0.5 to 1: 3, in particular 1: 1 to 1: 2 , can stand.
  • the following are examples of the radicals mentioned as substituents of the compounds of the formulas (K1) to (K6): Examples of (C 1 to C 4 ) -alkyl radicals are the groups -CH 3 , -CH 2 CH 3 ,
  • Examples of (C 3 to C 6 ) cycloalkyl groups according to the invention are cyclopropyl, cyclopentyl and cyclohexyl.
  • Examples of (C 1 to C 4 ) -alkoxy radicals according to the invention are -OCH 3 , -OCH 2 CH 3 ,
  • a particularly preferred example of a (C 2 to C 4 ) polyhydroxyalkyl group is 1, 2
  • halogen atoms are F, Cl or Br atoms, Cl atoms are very particularly preferred
  • nitrogen-containing groups are in particular -NH 2 , (C 1 to C 4 ) -monoalkylamino groups,
  • Examples of (C 1 to C 4 ) -monoalkylamino groups are -NHCH 3 , -NHCH 2 CH 3 , -NHCH 2 CH 2 CH 3 ,
  • Examples of (C 1 to C 4 ) -dialkylamino groups are -N (CH 3 ) 2 , -N (CH 2 CH 3 ) 2 .
  • Examples of (C 1 to C 4 ) -alkoxy (C 1 to C 4 ) -alkyl groups are the groups -CH 2 CH 2 -O-CH 3 ,
  • Examples of (C 1 to C 4 ) -alkoxy (C 1 -C 4 ) -alkoxy groups are the groups -O-CH 2 CH 2 -O-CH 3 ,
  • hydroxy (C 1 -C 4 ) -alkoxy radicals are -O-CH 2 OH, -O-CH 2 CH 2 OH, -O-CH 2 CH 2 CH 2 OH,
  • Examples of (C 1 to C 4 ) -aminoalkyl radicals are -CH 2 NH 2 , -CH 2 CH 2 NH 2 , -CH 2 CH 2 CH 2 NH 2 ,
  • aryl groups is the phenyl group, which may also be substituted.
  • aryl (C 1 to C 4 ) alkyl groups are the benzyl group and the 2-phenylethyl group. It may be preferred according to the invention to add to the agents A and / or B of the kit according to the invention as a further dye precursor a naturally-analogous dye.
  • the dyestuff precursors of naturally-analogous dyes are preferably indoles and indolines which have at least two groups selected from hydroxy and / or amino groups, preferably as a substituent on the six-membered ring. These groups may carry further substituents, e.g. Example in the form of etherification or esterification of the hydroxy group or alkylation of the amino group.
  • the colorants contain at least one indole and / or indoline derivative.
  • Compositions according to the invention which comprise precursors of naturally-analogous dyes are preferably used as air-oxidative colorants. Consequently, in this embodiment said compositions are not added with an additional oxidizing agent.
  • Particularly suitable precursors of naturally-analogous hair dyes are derivatives of 5,6-dihydroxyindoline of the formula (RN1),
  • R 1 is hydrogen, a C 1 -C 4 -alkyl group or a C 1 -C 4 -hydroxy-alkyl group
  • R 2 is hydrogen or a -COOH group, wherein the -COOH group may also be present as a salt with a physiologically compatible cation,
  • R 3 is hydrogen or a C 1 -C 4 -alkyl group
  • R 4 is hydrogen, a C 1 -C 4 -alkyl group or a group -CO-R 6 , in which R 6 is a C 1 -C 4 -alkyl group, and
  • R 5 represents one of the groups mentioned for R 4, and physiologically compatible salts of these compounds with an organic or inorganic acid.
  • indoline Particularly preferred derivatives of indoline are 5,6-dihydroxyindoline, N-methyl-5,6-dihydroxyindoline, N-ethyl-5,6-dihydroxyindoline, N-propyl-5,6-dihydroxyindoline,
  • N-butyl-5,6-dihydroxyindoline and 5,6-dihydroxyindoline-2-carboxylic acid Particularly noteworthy within this group are N-methyl-5,6-dihydroxyindoline, N-ethyl-5,6-dihydroxyindoline, N-propyl-5,6-dihydroxyindoline, N-butyl-5,6-dihydroxyindoline and especially 5, 6-Dihydroxyindolin.
  • R 1 is hydrogen, a C 1 -C 4 -alkyl group or a C 1 -C 4 -hydroxyalkyl group
  • R 2 is hydrogen or a -COOH group, wherein the -COOH group may also be present as a salt with a physiologically compatible cation,
  • R 3 is hydrogen or a C 1 -C 4 -alkyl group
  • R 4 is hydrogen, a C 1 -C 4 -alkyl group or a group -CO-R 6 , in which R 6 is a C 1 -C 4 -alkyl group, and
  • R 5 represents one of the groups mentioned for R 4, and physiologically compatible salts of these compounds with an organic or inorganic acid.
  • Particularly preferred derivatives of indole are 5,6-dihydroxyindole, N-methyl-5,6-dihydroxyindole, N-ethyl-5,6-dihydroxyindole, N-propyl-5,6-dihydroxyindole, N-butyl-5,6- dihydroxyindole, 5,6-dihydroxyindole-2-carboxylic acid.
  • N-methyl-5,6-dihydroxyindole N-ethyl-5,6-dihydroxyindole, N-propyl-5,6-dihydroxyindole, N-butyl-5,6-dihydroxyindole, and especially the 5,6 - Dihydroxyindole.
  • the indoline or the indole derivatives can be used both as free bases and in the form of their physiologically acceptable salts with inorganic or organic acids, eg. As the Hydrochlori- de, sulfates and hydrobromides, are used. Furthermore, in the agent A and / or in the agent B additionally at least one substantive dye may be included. These are dyes that raise directly on the hair and do not require an oxidative process to form the color. Direct dyes are usually nitrophenylenediamines, nitroaminophenols, azo dyes, anthraquinones or indophenols.
  • the substantive dyes are each preferably used in an amount of 0.001 to 20 wt .-%, based on the total application preparation.
  • the total amount of substantive dyes is preferably at most 20% by weight.
  • Direct dyes can be subdivided into anionic, cationic and nonionic substantive dyes.
  • Particularly suitable anionic direct dyes are 6-hydroxy-5 - [(4-sulfophenyl) azo] -2-naphthalenesulfonic acid disodium salt (CI 15.985, Food Yellow No. 3, FD & C Yellow No. 6), 2,4-dinitro-1 -naphthol-7-sulfonic acid disodium salt (Cl.10.316; Acid Yellow 1, Food Yellow No. 1), 2- (indan-1, 3-dion-2-yl) quinoline-x, x-sulfonic acid (mixture of mono and disulfonic acid) (Cl 47,005, D & C Yellow No. 10, Food Yellow No.
  • Pigment Red 57 1), 3 - [(2,4-dimethyl-5-sulfophenyl) azo] -4-hydroxy-1-naphthalenesulfonic acid disodium salt (Cl 14.700; Food Red No. 1; Ponceau SX; FD & C Red No. 4), 1,4-bis [(2-sulfo-4-methylphenyl) amino] -9,10-anthraquinone disodium salt (Cl.
  • Acid Blue 1 bis [4- (diethylamino) phenyl] (5-hydroxy-2, 4-disulfophenyl) - carbenium inner salt, calcium salt (2: 1) (CI 42,051, Acid Blue 3), N - [4 - [(2,4-disulfophenyl) [4- [ethyl (phenylmethyl) amino) phenyl] ] methylene] -2,5-cyclohexadien-1-ylidene] -N-ethylbenzenemethanamine hydroxide, inner salt, sodium salt (CI 42.080, Acid Blue 7), (2-sulfophenyl) di [4- (ethyl (4- sulfophenyl) methyl) amino) phenyl] -carbenium disodium salt betaine (CI 42.090; Acid Blue 9; FD & C Bl no.
  • Preferred anionic substantive dyes are those under the international designations or trade names Acid Yellow 1, Yellow 10, Acid Yellow 23, Acid Yellow 36, Acid Orange 7, Acid Red 33, Acid Red 52, Pigment Red 57: 1, Acid Blue 7, Acid Green 50, Acid Violet 43, Acid Black 1 and Acid Black 52 known compounds.
  • Particularly suitable cationic direct dyes are 9- (dimethylannino) benzo [a] phenoxazine-7-ium chloride (Cl 51, 175, Basic Blue 6), di [4- (diethylamino) phenyl] [4- (ethylamino ) naphthyl] carbenium chloride (Cl 42,595; Basic Blue 7), di- (4- (dimethylannino) phenyl) - (4- (methylphenylamino) naphthalen-1-yl) carbenium chloride (CI 42,563; Basic Blue 8), 3,7-di (dimethylamino) -phenothiazine-5-ium chloride (CI 52.015 Basic Blue 9), di [4- (dimethylamino) phenyl] [4- (phenylannino) naphthyl] carbenium chloride (Cl 44.045, Basic Blue 26), 2 - [(4- (ethyl (2-
  • aromatic systems substituted with a quaternary nitrogen group such as Basic Yellow 57, Basic Red 76, Basic Blue 99, Basic Brown 16 and Basic Brown 17, as well as
  • Preferred cationic substantive dyes of group (c) are in particular the following compounds:
  • the compounds of the formulas (DZ1), (DZ3) and (DZ5) which are also known by the names Basic Yellow 87, Basic Orange 31 and Basic Red 51, are very particularly preferred cationic substantive dyes of group (c).
  • the cationic direct dyes which are sold under the trademark Arianor ®, according to the invention are also very particularly preferred cationic direct dyes.
  • Nonionic substantive dyes are:
  • Suitable nonionic substantive dyes are in particular nonionic nitro and quinone dyes and neutral azo dyes.
  • Suitable blue nitro dyes are in particular:
  • Suitable red nitro dyes are in particular:
  • Suitable yellow nitro dyes are in particular:
  • 1,2-diamino-4-nitrobenzene (CI 76,020), 1 - [(2-hydroxyethyl) amino] -2-nitrobenzene (HC Yellow 2), 1- (2-hydroxyethoxy) -2 - [(2-hydroxyethyl ) amino] -5-nitrobenzene (HC Yellow 4), 1-amino-2 - [(2-hydroxyethyl) amino] -5-nitrobenzene (HC Yellow 5), 4 - [(2,3-dihydroxypropyl) amino] 3-nitro-1-trifluoromethyl-benzene (HC Yellow 6), 2- [di (2-hydroxyethyl) amino] -5-nitrophenol, 2 - [(2-hydroxyethyl) -amino] -1-n-ethoxy-5- nitrobenzene, 2-amino-3-nitrophenol, 2-amino-4-nitrophenol, 1-amino-2-methyl-6-nitrobenzene, 1- (2-hydroxyethoxy) -3-methylannino-4-nitrobenzen
  • Suitable quinone dyes are in particular:
  • Suitable neutral azo dyes are in particular:
  • Preferred nonionic substantive dyes are those under the international designations or trade names HC Yellow 2, HC Yellow 4, HC Yellow 5, HC Yellow 6, HC Yellow 12, HC Orange 1, Disperse Orange 3, HC Red 1, HC Red 3, HC HC Red 11, HC Red 11, HC Red 11, HC Blue 11, HC Blue 2, HC Blue 11, HC Blue 12, Disperse Blue 3, HC Violet 1, Disperse Violet 1, Disperse Violet 4, Disperse Black 9 well-known compounds, as well 1,4-diamino-2-nitrobenzene, 2-amino-4-nitrophenol, 1,4-bis (2-hydroxyethyl) amino-2-nitrobenzene, 3-nitro-4- (2-hydroxyethyl) aminophenol, 2- (2-hydroxyethyl) amino-4,6-dinitrophenol, 4 - [(2-hydroxyethyl) amino] -3-nitro-1-ethylbenzene, 1-amino-4- (2-hydroxyethyl) amino-5- Chloro-2-nitrobenzene, 4-amino-3
  • the substantive dyes each represent uniform compounds. Rather, due to the production process for the individual dyes, minor amounts of other components may be included, as far as these do not adversely affect the dyeing result or for other reasons, e.g. toxicological, must be excluded.
  • direct dyes also naturally occurring dyes may be used, as for example in henna red, henna neutral, henna black, chamomile flower, sandalwood, black tea, buckthorn bark, sage, bluewood, madder root, Catechu, Sedre and alkano root are included.
  • the agents according to the invention may contain the optionally contained developers, couplers and / or direct drawers in an amount of from 0.01 to 20.00% by weight, based on the kit according to the invention and thus based on a mixture of agent A and agent B.
  • kit according to the invention may also contain naturally occurring dyes such as those found in henna red, henna neutral, henna black, chamomile flower, sandalwood, black tea, buckthorn bark, sage, sawnwood, madder root, catechu, sedre and alkano root.
  • naturally occurring dyes such as those found in henna red, henna neutral, henna black, chamomile flower, sandalwood, black tea, buckthorn bark, sage, sawnwood, madder root, catechu, sedre and alkano root.
  • agent A and / or agent B may additionally contain color enhancers.
  • the color enhancers are preferably selected from the group consisting of piperidine, piperidine-2-carboxylic acid, piperidine-3-carboxylic acid, piperidine-4-carboxylic acid, pyridine, 2-hydroxypyridine, 3-hydroxypyridine, 4-hydroxypyridine, imidazole, 1-methylimidazole, arginine, histidine, pyrrolidine, proline, Pyrrolidone, pyrrolidone-5-carboxylic acid, pyrazole, 1, 2,4-triazole, piperazidine, their derivatives and their physiologically acceptable salts.
  • the color intensifiers mentioned above can be used in an amount of 0.03 to 65 mmol, in particular 1 to 40 mmol, in each case based on 100 g of the finished application mixture.
  • oxidizing agents for. B. H 2 O 2
  • the kit according to the invention contains air-oxidizable oxidation dye precursors or indole or indoline derivatives
  • oxidizing agent can be dispensed with without problems in such a case. However, it may u.
  • Oxidizing agents are generally used in an amount of 0.01 to 6 wt .-%, based on the finished application mixture.
  • a preferred oxidizing agent for human hair is H 2 O 2 .
  • Mixtures of several oxidizing agents such as a combination of hydrogen peroxide and peroxodisulfates of the alkali and alkaline earth metals or from iodide ion sources, such as alkali metal iodides and hydrogen peroxide or the aforementioned peroxodisulfates, may also be used.
  • the oxidizing agent or the oxidizing agent combination can be used according to the invention in conjunction with oxidation catalysts in the hair dye.
  • Oxidation catalysts are, for example, metal salts, metal chelate complexes or metal oxides, which allow a slight change between two oxidation states of the metal ions.
  • oxidation catalysts examples are enzymes.
  • suitable enzymes are peroxidases, which can markedly increase the effect of small amounts of hydrogen peroxide.
  • enzymes are suitable according to the invention which directly oxidize the oxidation dye precursors with the aid of atmospheric oxygen, such as, for example, the laccases, or generate small amounts of hydrogen peroxide in situ and thus biocatalytically activate the oxidation of the dye precursors.
  • catalysts for the oxidation of the dye precursors are the so-called 2-electron oxidoreductases in combination with the specific substrates, eg Pyranose oxidase and eg D-glucose or galactose,
  • Lactate oxidase and lactic acid and their salts Lactate oxidase and lactic acid and their salts
  • kit according to the invention may contain all known in such preparations active ingredients, additives and excipients.
  • nonionic polymers such as vinylpyrrolidone / vinyl acrylate copolymers, polyvinylpyrrolidone and vinylpyrrolidone / vinyl acetate copolymers and polysiloxanes
  • anionic polymers such as polyacrylic acids, crosslinked polyacrylic acids, vinyl acetate / crotonic acid copolymers, vinylpyrrolidone / vinyl acrylate Copolymers, vinyl acetate / butyl maleate / isobornyl acrylate copolymers, methyl vinyl ether / maleic anhydride copolymers and acrylic acid / ethyl acrylate / N-tert-butylacrylamide terpolymers,
  • Thickeners such as agar-agar, guar gum, alginates, xanthan gum, gum arabic, karaya gum, locust bean gum, linseed gums, dextrans, cellulose derivatives, e.g. For example, methylcellulose, hydroxyalkylcellulose and carboxymethylcellulose, starch fractions and derivatives such as amylose, amylopectin and dextrins, clays such. As bentonite or fully synthetic hydrocolloids such.
  • structurants such as glucose and maleic acid, perfume oils, dimethyl isosorbide and cyclodextrins, anti-dandruff agents such as Piroctone Olamine and zinc Omadine,
  • Active substances such as panthenol, pantothenic acid, allantoin, pyrrolidonecarboxylic acids and their salts, plant extracts and vitamins, cholesterol, light stabilizers, bodying agents such as sugar esters, polyol esters or polyol alkyl ethers, Fats and waxes such as spermaceti, beeswax, montan wax, paraffins, fatty alcohols and
  • Swelling and penetration substances such as glycerol, propylene glycol monoethyl ether, carbonates,
  • Opacifiers such as latex,
  • Propellants such as propane-butane mixtures, N 2 O, dimethyl ether, CO 2 and air and
  • the ingredients of the cosmetic carrier are used to prepare the agent A, the agent B in amounts customary for this purpose; z. B. emulsifiers are used in concentrations of 0.5 to 30 wt .-% and thickening agents in concentrations of 0.1 to 25 wt .-% based on the respective agent.
  • a second object of the present invention relates to a process for dyeing keratin-containing fibers, in particular human hair, wherein at least one agent A, which in a cosmetic carrier at least one CH acid
  • kits in the method in which the agent A is split into the separately prepared means A1 and A2 as described in the first subject of the invention.
  • a method for dyeing keratin-containing fibers, in particular human hair characterized in that at least one agent A1 containing at least one CH-acidic compound, wherein the agent A1 is in powder form, granulated or present as a shaped body at least one agent A2 containing at least one reactive carbonyl compound, wherein the
  • agent A1 can be mixed with agent A2 before being mixed with agent B.
  • agent A1 it is also conceivable first to mix agent A1 with agent B and to subsequently add agent A2 or to mix agent A2 with agent B and to add agent A1 subsequently.
  • the pH of the resulting mixture of the agent A and agent B - or the means A1, A2 and B - in the alkaline range at a value greater than 7.
  • a pH of 7.5 to 11 is preferred. If the pH of the final application mixture is between 8 and 10.5, this is particularly preferred.
  • the heat input may be provided by an external heat source, e.g. warm air of a hot air blower, as well as, especially when a hair color on living subjects, done by the body temperature of the subject. In the latter case, usually the party to be dyed is covered with a hood.
  • an external heat source e.g. warm air of a hot air blower
  • the colorant of the kit according to the invention is rinsed off the hair again or washed out with a shampoo.
  • a hair conditioner or a conditioner can also be used.
PCT/EP2008/060682 2007-08-24 2008-08-14 Kit zur bereitstellung von färbemitteln WO2009027237A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007040314.5 2007-08-24
DE200710040314 DE102007040314A1 (de) 2007-08-24 2007-08-24 Kit zur Bereitstellung von Färbemitteln

Publications (2)

Publication Number Publication Date
WO2009027237A2 true WO2009027237A2 (de) 2009-03-05
WO2009027237A3 WO2009027237A3 (de) 2009-08-06

Family

ID=40280285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/060682 WO2009027237A2 (de) 2007-08-24 2008-08-14 Kit zur bereitstellung von färbemitteln

Country Status (2)

Country Link
DE (1) DE102007040314A1 (zh)
WO (1) WO2009027237A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021058157A1 (de) * 2019-09-23 2021-04-01 Henkel Ag & Co. Kgaa Kit und verfahren zum färben von keratinischem material mit aminosilikon und farbgebender verbindung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0502783A1 (fr) * 1991-03-05 1992-09-09 L'oreal Procédé de teinture des fibres kératiniques associant l'isatine ou ses dérivés à une aminopyridine ou aminopyrimidine, et agents de teinture
WO2004022016A1 (de) * 2002-09-05 2004-03-18 Henkel Kommanditgesellschaft Auf Aktien Mittel zum färben von keratinhaltigen fasern
WO2004058202A1 (de) * 2002-12-23 2004-07-15 Henkel Kommanditgesellschaft Auf Aktien Färbetablette
WO2005120445A2 (de) * 2004-06-12 2005-12-22 Henkel Kommanditgesellschaft Auf Aktien Mittel zum färben von keratinhaltigen fasern
WO2006119819A1 (de) * 2005-05-12 2006-11-16 Henkel Kommanditgesellschaft Auf Aktien Mittel zum färben von keratinhaltigen fasern
WO2007079802A1 (de) * 2005-12-23 2007-07-19 Henkel Ag & Co. Kgaa Mittel zum färben von keratinhaltigen fasern

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4237253A (en) 1977-04-21 1980-12-02 L'oreal Copolymers, their process of preparation, and cosmetic compounds containing them
US4122029A (en) 1977-07-27 1978-10-24 Dow Corning Corporation Emulsion compositions comprising a siloxane-oxyalkylene copolymer and an organic surfactant
US4265878A (en) 1979-06-07 1981-05-05 Dow Corning Corporation Antiperspirant stick compositions
JPS5699407A (en) 1980-01-09 1981-08-10 Kao Corp Hair rinse composition
US4393886A (en) 1980-09-05 1983-07-19 Ciba-Geigy Corporation Mixtures of quaternary, polymeric, high molecular weight ammonium salts, which are based on acrylic compounds, and surfactants, their preparation, and their use in cosmetics
JPS5813700A (ja) 1981-07-17 1983-01-26 花王株式会社 食器用洗浄剤組成物
US4421769A (en) 1981-09-29 1983-12-20 The Procter & Gamble Company Skin conditioning composition
EP0217274A3 (en) 1985-09-30 1988-06-29 Kao Corporation Hair cosmetic composition
DE3708451A1 (de) 1987-03-16 1988-10-06 Henkel Kgaa Zwitterionische polymere und deren verwendung in haarbehandlungsmitteln
DE3723354A1 (de) 1987-07-15 1989-01-26 Henkel Kgaa Sulfatierte hydroxy-mischether, verfahren zu ihrer herstellung und ihre verwendung
DE3725030A1 (de) 1987-07-29 1989-02-09 Henkel Kgaa Oberflaechenaktive hydroxysulfonate
DE3926344A1 (de) 1989-08-09 1991-02-28 Henkel Kgaa Verfahren zur herstellung von hellfarbigen oelsaeuresulfonaten
JPH05500076A (ja) 1989-08-09 1993-01-14 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチェン 洗剤中で使用する高密度顆粒の製造方法
DE3929973A1 (de) 1989-09-08 1991-03-14 Henkel Kgaa Haarpflegemittel
DE4440625A1 (de) 1994-11-14 1996-05-15 Henkel Kgaa Verfahren zur Herstellung hellfarbiger Chitosane
DE19503465A1 (de) 1995-02-03 1996-08-08 Henkel Kgaa Verfahren zur Herstellung von niedrigviskosen kationischen Biopolymeren
GB9708182D0 (en) 1997-04-23 1997-06-11 Dow Corning Sa A method of making silicone in water emulsions
US5998537A (en) 1998-09-21 1999-12-07 Dow Corning Corporation Emulsions containing ultrahigh viscosity silicone polymers
FR2785183B1 (fr) 1998-11-04 2002-04-05 Oreal COMPOSITION TINCTORIALE CONTENANT UN COLORANT DIRECT CATIONIQUE ET UNE PYRAZOLO-[1,5-a]- PYRIMIDINE A TITRE DE BASE D'OXYDATION, ET PROCEDES DE TEINTURE
DE10022743A1 (de) 2000-05-10 2001-11-22 Wella Ag Mittel zur Färbung von Fasern

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0502783A1 (fr) * 1991-03-05 1992-09-09 L'oreal Procédé de teinture des fibres kératiniques associant l'isatine ou ses dérivés à une aminopyridine ou aminopyrimidine, et agents de teinture
WO2004022016A1 (de) * 2002-09-05 2004-03-18 Henkel Kommanditgesellschaft Auf Aktien Mittel zum färben von keratinhaltigen fasern
WO2004058202A1 (de) * 2002-12-23 2004-07-15 Henkel Kommanditgesellschaft Auf Aktien Färbetablette
WO2005120445A2 (de) * 2004-06-12 2005-12-22 Henkel Kommanditgesellschaft Auf Aktien Mittel zum färben von keratinhaltigen fasern
WO2006119819A1 (de) * 2005-05-12 2006-11-16 Henkel Kommanditgesellschaft Auf Aktien Mittel zum färben von keratinhaltigen fasern
WO2007079802A1 (de) * 2005-12-23 2007-07-19 Henkel Ag & Co. Kgaa Mittel zum färben von keratinhaltigen fasern

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021058157A1 (de) * 2019-09-23 2021-04-01 Henkel Ag & Co. Kgaa Kit und verfahren zum färben von keratinischem material mit aminosilikon und farbgebender verbindung
US11766396B2 (en) 2019-09-23 2023-09-26 Henkel Ag & Co. Kgaa Kit and method for dyeing keratinous material by means of aminosilicone and a chromophoric compound

Also Published As

Publication number Publication date
WO2009027237A3 (de) 2009-08-06
DE102007040314A1 (de) 2009-02-26

Similar Documents

Publication Publication Date Title
EP2358343B1 (de) Verfahren zum entfärben keratinhaltiger fasern
DE102008024030A1 (de) Aufhellmittel mit kationischen 3,4-Dihydroisochinoliniumderivaten, speziellen Alkanolaminen und Wasserstoffperoxid
WO2009033833A2 (de) Färbemittel mit naturfarbstoffen und 1,3-dihydroxyaceton
DE102008044715A1 (de) Kationische Acylpyridinium-Derivate als Bleichaktivatoren
EP2014275A2 (de) Kit zur Bereitstellung von lagerstabilen Formulierungen
WO2009043613A1 (de) Aufhellmittel mit kationischen 3,4-dihydroisochinoliniumderivaten und wasserstoffperoxid
DE102010030434A1 (de) Kationische Direktzieher mit Dimethyl[(2-oxo-1,3-dioxolan-4-yl)methyl]-ammonium-Gruppierung und Mittel zum Färben von keratinhaltigen Fasern
DE102008052618A1 (de) Tricyclische Aldehyde und C,H-acide Verbindungen
EP1893165A1 (de) Mehrkomponentenmittel zum färben keratinischer fasern
DE102008044714A1 (de) Kationische Dihydroisochinolinium-Derivate als Bleichaktivatoren
DE102008036535A1 (de) Coloration mit kationisierbaren Polymer
DE102008046883A1 (de) Haarbehandlungsmittel mit Spirulina-Extrakt
WO2009019048A2 (de) Haarfärbemittel
DE102008018132A1 (de) Kationische Direktzieher und Mittel zum Färben von keratinhaltigen Fasern
EP2044977B1 (de) Haarfärbeverfahren mit oxidativer Vorbehandlung
WO2009027112A1 (de) Haarbehandlungsmittel
DE102008046882A1 (de) Haarbehandlungsmittel mit Chitosan Succinamid
EP1944010B1 (de) Aufhell- und/oder Färbemittel mit Acrylsäurederivat (en)
WO2009027237A2 (de) Kit zur bereitstellung von färbemitteln
DE102008061863A1 (de) Verfahren zur Kaschierung grauer Haare
DE102008056811A1 (de) Neue Oxidationsfarbstoffvorprodukte
WO2009040149A1 (de) Biotin und kieselsäure gegen haaralterung
DE102007027862A1 (de) Verfahren zur Abfüllung haarfarbverändernder Mittel
WO2009068330A2 (de) Oxidatives färbeverfahren für keratinhaltige fasern
EP1972323A2 (de) Haarfärbemittel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08787219

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08787219

Country of ref document: EP

Kind code of ref document: A2