WO2011102693A2 - 미세조류 대량배양을 위한 광생물 반응기 및 이를 이용한 미세조류 배양방법 - Google Patents

미세조류 대량배양을 위한 광생물 반응기 및 이를 이용한 미세조류 배양방법 Download PDF

Info

Publication number
WO2011102693A2
WO2011102693A2 PCT/KR2011/001147 KR2011001147W WO2011102693A2 WO 2011102693 A2 WO2011102693 A2 WO 2011102693A2 KR 2011001147 W KR2011001147 W KR 2011001147W WO 2011102693 A2 WO2011102693 A2 WO 2011102693A2
Authority
WO
WIPO (PCT)
Prior art keywords
culture vessel
microalgae
photobioreactor
film
light
Prior art date
Application number
PCT/KR2011/001147
Other languages
English (en)
French (fr)
Other versions
WO2011102693A3 (ko
Inventor
이철균
임상민
배재한
조광국
김지훈
강신애
김혜정
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR20100015584A external-priority patent/KR101188745B1/ko
Priority claimed from KR1020100076416A external-priority patent/KR101385939B1/ko
Priority claimed from KR1020100076433A external-priority patent/KR101385940B1/ko
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to US13/580,635 priority Critical patent/US20130052719A1/en
Priority to AU2011216650A priority patent/AU2011216650A1/en
Publication of WO2011102693A2 publication Critical patent/WO2011102693A2/ko
Publication of WO2011102693A3 publication Critical patent/WO2011102693A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/18Open ponds; Greenhouse type or underground installations
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/56Floating elements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/06Means for regulation, monitoring, measurement or control, e.g. flow regulation of illumination
    • C12M41/10Filtering the incident radiation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N13/00Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves

Definitions

  • the present invention relates to an optical bioreactor capable of culturing a large amount of microalgae, and more particularly, to a photobiological reactor for culturing microalgae having a filter function of transmitting or blocking only a specific wavelength or region of light.
  • Microalgae photosynthetic unicellular microorganisms, can produce various organic substances such as proteins, carbohydrates, and fats through photosynthesis. Recently, not only the production of high value-added products such as functional polysaccharides, carotenoids, vitamins and unsaturated fatty acids, but also the main culprit of global warming is evaluated as the optimal organism for the purpose of carbon dioxide removal. The main reason is that the doubling time for the effective removal of carbon dioxide, a major culprit of global warming in terms of quantity, is shorter than that of land plants, and shows high growth potential even in a harsh environment, and direct combustion gas from a power plant or plant. Because it can be used as.
  • microalgae are capable of fixing carbon dioxide and accumulating lipids in living organisms.
  • Many studies are being conducted on biodiesel production using the accumulated lipids.
  • the cultivation of microalgae must be carried out on a large scale and at high concentration. Therefore, technologies related to the construction of large-scale culture facilities are indispensable.
  • microalgae have been cultivated by constructing large-scale ponds outdoors or by installing tubular photobioreactors as plant equipment.
  • various types of photobioreactors installed indoors, not outdoors, are used as a culture facility for culturing microalgae.
  • outdoor installed photoreactors have problems such as contamination by other microorganisms (open photoreactors), excessive installation, maintenance and operation costs, and lack of available land space. Since it requires a light source, it does not meet the purpose of producing bioenergy, which is a cheap microalgae-derived product.
  • the present invention is to solve the various problems including the above problems, an object of the present invention to provide an optical bioreactor and a microalgae culture method using the same to maximize the light utilization efficiency of the microalgae.
  • these problems are exemplary, and the scope of the present invention is not limited thereby.
  • an optical filter region capable of selectively transmitting or blocking a portion of a wavelength or region from sunlight or a heat conversion region for selectively absorbing a portion of the wavelength or region from sunlight and converting it into heat.
  • a culture vessel including an outer wall and a reaction chamber three-dimensionally formed to receive microalgae as an inner space defined by the outer wall;
  • a photobioreactor for microalgae mass cultivation comprising coupling means for connecting to a water structure or water phase structure.
  • an outer wall is provided with an optical filter region capable of selectively transmitting or blocking a portion of a wavelength or region from sunlight or a heat conversion region for selectively absorbing a portion of the wavelength or region from sunlight and converting it into heat
  • a reaction chamber formed three-dimensionally to accommodate microalgae as an inner space defined by the outer wall, forming a part of the outer wall at a position different from the first film and the first film, and having a special feature different from the first film.
  • a culture vessel including a second membrane;
  • Microalgae comprising a support means connected to the culture vessel or a coupling means for connecting the culture vessel to the water surface, the water structure or the water structure to position the culture vessel near the water surface to be exposed to sunlight There is provided a photobioreactor for mass culture.
  • a method for culturing microalgae using an optical bioreactor including leaving the microalgae to perform photosynthesis by sunlight.
  • FIG. 1 to 4 are schematic views showing a photobioreactor according to a first embodiment of the present invention.
  • 5 to 8 are schematic views showing a photobiological reactor according to a second embodiment of the present invention.
  • 9 to 11 are exemplary views schematically showing a photobioreactor according to a third embodiment of the present invention.
  • FIG. 12 is an exemplary view schematically showing a photobioreactor according to a fourth embodiment of the present invention.
  • FIG. 13 is an exemplary view schematically showing a photobioreactor according to a fifth embodiment of the present invention.
  • FIG. 14 is an exemplary view schematically showing a photobioreactor according to a sixth embodiment of the present invention.
  • 15 to 17 is an exemplary view schematically showing a photobioreactor according to a seventh embodiment of the present invention.
  • FIG. 18 is a flowchart illustrating a method of controlling light energy of the sun introduced into the photobioreactor for each period using a light blocking pattern film in the form of a tape.
  • 19 is an exemplary view schematically showing a flat culture vessel of the photobioreactor according to the eighth, ninth, or eleventh embodiment of the present invention.
  • 20 is an exemplary view schematically showing the shape of the light blocking pattern that can be formed on one surface of the culture vessel of the photobioreactor according to the eighth embodiment of the present invention.
  • 21 is a view showing the absorbance of the microalgal dye according to the light wavelength of the present invention.
  • FIG. 22 is an exemplary view schematically showing a culture vessel of the photobioreactor according to the tenth embodiment of the present invention.
  • 23 and 24 are exemplary views showing the shape of the culture vessel of the photobioreactor according to an embodiment of the present invention.
  • FIG. 25 is an exemplary diagram illustrating an example of manufacturing the flat photoreactor of FIG. 23 in the form of a cluster.
  • FIG. 26 is an exemplary view illustrating manufacturing the cylindrical photobioreactor of FIG. 24 in the form of a cluster.
  • an optical filter region capable of selectively transmitting or blocking a portion of a wavelength or region from sunlight or a heat conversion region for selectively absorbing a portion of the wavelength or region from sunlight and converting it into heat.
  • a culture vessel including an outer wall and a reaction chamber three-dimensionally formed to receive microalgae as an inner space defined by the outer wall;
  • a photobioreactor for microalgae mass cultivation comprising coupling means for coupling to a basin surface, basin structure or water phase structure.
  • all or part of the outer wall may be made of a light transmissive material.
  • the light transmissive material is glass, polyvinyl chloride (PVC), terephthalate (PET), acrylic, polystyrene (PS), high density polyethylene (HDPE), low density polyethylene (LDPE), polypropylene (PP), polycarbonate (PC) , Polyamide (PA) or a laminate structure of two or more thereof.
  • All or part of the outer wall may be a semipermeable membrane, wherein the semipermeable membrane is cellulose acetate, cellulose triacetate, cellulose acetate-cellulose triacetate blends, nitrocellulose ), Gelatin, polyamine, polyimide, poly (ether imide), aromatic polyamide, polybenzimidazole, poly Polybenzimidazolone, polyacrylonitrile, polyacrylonitrile-poly (vinyl chloride) copolymer, polysulfone, polyethersulfone, poly (dimethyl) Phenylene oxide) ⁇ poly (dimethylphenylene oxide) ⁇ , poly (vinylidene fluoride) ⁇ poly (vinylidene fluoride) ⁇ At least one selected from the group consisting of polyelectrolyte complexes, polyolefins, poly (methyl methacrylate), polyvinyl alcohol, and copolymers thereof Polymers may be included.
  • the appropriate depth means a depth through which sunlight is transmitted, and may be 1 cm to 50 m, 10 cm to 25 m, and 10 cm to 10 m. If the depth is too deep, photosynthesis cannot be performed properly, and if it is too shallow, it may be damaged by strong winds such as typhoons.
  • an outer wall is provided with an optical filter region capable of selectively transmitting or blocking a portion of a wavelength or region from sunlight or a heat conversion region for selectively absorbing a portion of the wavelength or region from sunlight and converting it into heat
  • a reaction chamber formed three-dimensionally to accommodate microalgae as an inner space defined by the outer wall, forming a part of the outer wall at a position different from the first film and the first film, and having a special feature different from the first film.
  • a culture vessel including a second membrane;
  • a photobioreactor for microalgae mass cultivation comprising coupling means for coupling to a basin surface, basin structure or water phase structure.
  • the culture vessel may comprise a first membrane and a second membrane that forms part of the outer wall at a different position from the first membrane and has different characteristics from the first membrane.
  • the first film and the second film may have different light transmission characteristics.
  • the wavelength region through which the first layer and the second layer may be transmitted may be different from each other.
  • the first membrane and the second membrane may have different material permeation characteristics.
  • the first membrane may include a semipermeable membrane having selective permeability to oxygen or carbon dioxide
  • the second membrane may include a semipermeable membrane having selective permeability to water and nutrients.
  • the first film and the second film may have different light reflection characteristics, and the second film may reflect the light wavelength transmitted through the first film to be supplied to the reaction chamber.
  • the optical filter area or the heat conversion area may be a pattern having a predetermined shape.
  • the pattern may be designed such that its shape or density is changed corresponding to the injected light energy.
  • the light blocking region or heat conversion region comprises a light transmitting film; And a light blocking pattern film or a heat conversion pattern film attached to one surface of the outer wall.
  • the light blocking pattern film or the heat conversion pattern film may be a tape that can be attached and detached to the light transmitting film.
  • the optical filter area may be prepared through painting, coating or dye mixing.
  • the optical filter region includes lead chromate (PbCrO 4 ), yellow iron oxide (FeO (OH) or Fe 2 O 3 ⁇ H 2 O), cadmium yellow (CdS or CdS + ZnS), and titanium yellow (TiO 2 ⁇ NiO.
  • the pigment may be a natural pigment other than heavy metals, and the natural pigment may include gardenia yellow pigment, side blue pigment, Doc blue pigment, safflower red pigment, Schisandra chinensis pigment, quintet yellow pigment, mugwort green pigment, and astaxanthin.
  • the heat conversion region may include a photothermal conversion material.
  • the photothermal conversion material is a material having a function of converting irradiated light energy into thermal energy (Korean Patent Publication No. 2004-0071142).
  • the photothermal conversion material is a material capable of absorbing infrared rays, near infrared rays, visible rays or ultraviolet rays, and may be organic or inorganic pigments or dyes, organic pigments, metals, metal oxides, metal carbides or metal borides.
  • all or part of the upper portion of the reaction vessel that receives the light energy may be additionally water-repellent coating so that no moisture or water droplets.
  • the optical filter regions may be sequentially arranged horizontally or vertically or arranged in a lattice shape so as to transmit two or more wavelength bands within a range of sunlight, and thus the ratio of wavelengths may be adjusted.
  • the water structure may be aquaculture equipment, buoys, buoys, submersible plants, floating sofas, barges or mega floats
  • the submersible plant is a wind power generator, tidal current generator, wave power generator It may be a maritime heliport or oil rig.
  • the cut structure includes a variety of cables, gas pipes, oil pipes.
  • it may further include a shape maintaining frame disposed inside or outside the culture vessel to maintain a three-dimensional shape of the culture vessel.
  • the culture vessel and the support means is connected to one or more ropes of adjustable length, further comprising a weight hanging on the lower portion of the culture vessel, to adjust the weight and the rope length By this, the depth of the culture vessel can be adjusted.
  • a gas supply pipe connected to the lower portion of the culture vessel and a gas supply means for supplying external air to the culture vessel through the gas supply tube, the microalgae in the culture vessel by the mixing action by the bubble It can be evenly distributed.
  • the culture vessel is formed in a reverse conical shape, the gas supply pipe and the weight may be connected to the vertex.
  • the culture vessel is formed to have a vertical cylindrical portion of the upper portion and the reverse conical portion of the lower portion to promote the mixing of the cells through the gas supply and prevent the subsidence of the cells, the gas supply pipe and the vertex of the reverse conical portion Weights can be connected.
  • the at least two culture vessels are connected to be arranged up and down, and the weight may be suspended at least one or more of the culture vessels including a culture vessel located at the bottom.
  • the support means has a pair of one or more connection points that are maintained at a predetermined interval from each other, the culture vessel is formed in a long and narrow shape, both ends in the longitudinal direction is a pair One or more ropes are respectively connected to the connection points to form the culture vessels, which can be freely turned upside down by the movement of waves or seawater.
  • the culture vessel may be formed in an elongated cylindrical shape and connected to the support means, the water structure, or the cutlery structure in a form divided into parallel with the water surface.
  • the culture vessel is formed to have a central cylindrical portion and a pair of conical portions at both ends of the cylindrical portion, the rope may be connected to each vertex of each conical portion.
  • a method for culturing microalgae using an optical bioreactor including leaving the microalgae to perform photosynthesis by sunlight.
  • the microalgae are Chlorella, Hamatococcus, Boturiococcus, Senedusmus, Nannoclopsis, Nannochloris, Spirulina, Chlamydomonas, Patiodoctalum, Dunaliella, Kizokaitrium, Nitsukia, Tetracell Miss, poppyrium, cyanobacteria, and the like.
  • the microalgae may produce carotenoids, cells, phycobiliproteins, lipids, carbohydrates, unsaturated fatty acids, and proteins in the photobioreactor.
  • FIG. 1 to 4 are schematic views showing a photobioreactor according to a first embodiment of the present invention.
  • the culture vessel 10-1 and the culture vessel 10-1 are located near the water surface to be exposed to sunlight. It includes a support means 30 is connected to the culture vessel 10-1 to position.
  • the culture vessel 10-1 is formed of a membrane having a predetermined thickness, and the optical filter region or part of the wavelength or region from the sunlight that can selectively transmit or block a portion of the wavelength or the region from the sunlight. It is formed three-dimensionally by an outer wall (11) having a heat conversion zone for selectively absorbing and converting into heat and a reaction chamber (1) which is a culture space capable of accommodating microalgae as an inner space defined by the outer wall (11). .
  • the culture vessel 10-1 is made of flexible glass, plastic, and a semi-permeable membrane, the culture vessel 10-1 is disposed inside or outside thereof to maintain a three-dimensional shape of the culture vessel 10-1. It is possible to further include, to maintain a stable culture space.
  • the culture vessel 10-1 may be freely modified according to the characteristics and culture scale of the microalgae to be cultured.
  • the culture vessel 10-1 transmits or blocks a specific wavelength or region to all or part of various light-transmissive materials such as semi-permeable membranes through which microalgae permeation is blocked while glass, plastic, and seawater can enter and exit.
  • the microalgal incubator having an optical filter region and / or a heat conversion region for absorbing light of a specific wavelength or region and converting the light into heat may be the most important feature of the present invention.
  • the optical filter area or the heat conversion area may be provided over the entire outer wall 11 and may constitute a part of the outer wall 11, which may be formed by coating or painting the outer wall 11. Or may be produced by mixing the pigments in the manufacture of the material of the outer wall 11.
  • the culture vessel 10-1 is capable of improving the production of microalgae by supplying or blocking only a specific wavelength to the microalgae, and it is possible to increase the production of metabolites according to the light wavelength.
  • an optical wavelength or region to be transmitted or blocked it is possible to transmit the wavelength or region of red, blue, green, etc. according to the optical energy efficiency according to the optical wavelength of the microalgae to be cultured.
  • the heat conversion region may be used to convert light not used for photosynthesis into heat by including a photothermal conversion material, thereby improving the culture efficiency and photosynthetic efficiency of the microalgae.
  • the heat conversion region can be made to be microalgal culture even in winter by reducing the width of the temperature drop of the culture medium.
  • the upper portion of the culture vessel may be additionally water-repellent coating.
  • the support means 30 is for positioning the culture vessel 10-1 near the water surface to be exposed to sunlight, as shown in FIG. 1, a pair of support members 35 arranged to be spaced apart from each other. And a connecting frame 37 connecting the pair of supporting members 35 in a state of maintaining a predetermined interval.
  • the support means 30 is not limited to the above form, it will be possible to various modifications depending on the shape and size of the culture vessel (10-1).
  • the culture vessel may be connected to a water structure (not shown), cutlery structure or water surface installed on the sea through a coupling means (not shown) instead of the support means 30.
  • the coupling means may be a variety of materials such as rope, chain, steel wire.
  • the water structure may be aquaculture equipment, buoys, buoys, submersible plants, floating sofas, barges or mega floats, and the submersible plants may be wind turbines, tidal current generators, wave generators, marine helicopters or oil drilling vessels.
  • the cut structure includes a variety of cables, gas pipes, oil pipes.
  • the photobioreactor according to the second embodiment of the present invention includes a culture vessel 10-2 and a support means 30, similar to the first embodiment, but includes a culture vessel 10-. 2) and the support means 30 is connected by one or more ropes 25 is adjustable in length.
  • the culture vessel 10-2 may be manufactured to transmit or block only one wavelength band within a range of sunlight, and as shown in FIGS. 6 to 8, the culture vessel 10-2 is within a range of sunlight.
  • the wavelength band of two or more regions in the optical filter region 13 of the culture vessel 10-2 horizontally or vertically arranged, or the specific wavelengths of the microalgae by mixing or cross-arranging specific wavelength transmission portions It can be manufactured to be able to adjust the ratio of.
  • all or part of the optical filter region 13 may be replaced by a thermal conversion region 13 that absorbs sunlight in a specific wavelength band and converts it into heat.
  • part or all of the upper portion of the culture vessel may be water-repellent coating.
  • the culture vessel 10-2 is made of flexible glass, plastic, semi-permeable membrane, or a light transmissive material
  • the culture vessel 10-2 is disposed inside or outside the culture vessel 10-2 and the culture vessel 10-2.
  • Shape maintenance frame to maintain the three-dimensional shape of may be additionally included.
  • the photobioreactor according to the second embodiment may further include a fixing means 70 fixed to the water surface in order to suspend the suspension means 30 to limit the moving range.
  • the fixing means 70 is to prevent the photobioreactor from moving in accordance with the movement of water such as seawater and freshwater, so as not to leave the controllable limited area, and is preferably made of a material having a high specific gravity. Similar to anchor) is preferably formed in a shape that can be easily fixed to the bottom surface, but is not limited thereto.
  • the culture vessel may be connected to a water structure (not shown), cutlery structure or water surface installed on the sea through a coupling means (not shown) instead of the support means 30.
  • the coupling means may be a variety of materials such as rope, chain, steel wire.
  • the water structure may be aquaculture equipment, buoys, buoys, submersible plants, floating sofas, barges or mega floats, and the submersible plants may be wind turbines, tidal current generators, wave generators, marine helicopters or oil drilling vessels.
  • the cut structure includes a variety of cables, gas pipes, oil pipes.
  • the photobioreactor according to the third embodiment of the present invention includes a culture vessel 10-3 and a support means 30 formed in a cylindrical shape.
  • the culture vessel (10-3) and the support means 30 is connected by one or more ropes 25 is adjustable in length, the weight weight hanging on the lower portion of the culture vessel (10-3) (60).
  • the photobioreactor according to the third embodiment is to supply the external air to the culture vessel (10-3) through the gas supply pipe 40, and the gas supply pipe 40 is connected to the lower portion of the culture vessel (10-3) It may further include a gas supply means (50). Therefore, the culture space within the culture vessel (10-3) when the gas supply to the micro-algae is evenly dispersed in the culture vessel (10-3) by the mixing action of the bubbles, the culture environment of the microalgae is maintained well To be possible.
  • the culture vessel 10-3 may naturally obtain a good mixing effect due to the flow of seawater due to currents and tidal differences. Therefore, the gas supply as described above is preferably selectively adopted when more desirable mixing action is required as necessary.
  • the culture vessel 10-3 may be manufactured to transmit or block only one wavelength band within a range of sunlight, and as shown in FIGS. 10 and 11, the culture vessel 10-3 is in the range of sunlight.
  • the optical filter region 13 of the culture vessel 10-3 is arranged horizontally or vertically in order to transmit two or more wavelength bands therein, or the specific wavelength-receiving portion is mixed or cross-arranged in a lattice shape to receive microalgae. It can be manufactured to enable the ratio adjustment of the wavelength.
  • all or part of the optical filter region 13 may be replaced by a thermal conversion region 13 that absorbs sunlight in a specific wavelength band and converts it into heat.
  • all or part of the upper portion of the culture vessel may be water-repellent coating in order to prevent water condensation.
  • the culture vessel 10-3 is made of flexible glass, plastic, semi-permeable membrane, or a light transmissive material
  • the culture vessel 10-3 is disposed inside or outside the culture vessel 10-3 and is culture vessel 10-3.
  • Shape maintaining frame 20 to maintain the three-dimensional shape of may be additionally included.
  • both the gas supply pipe 40 and the weight 60 are connected to the vertices of the culture vessel 10-3 is formed in a cylindrical shape, unlike the second embodiment, Fixing means 70 is fixed to the water surface in the state connected to hang at the vertex of the culture vessel (10-3) to limit the movement range.
  • the culture vessel may be connected to a water structure (not shown), cutlery structure or water surface installed on the sea through a coupling means (not shown) instead of the support means 30.
  • the coupling means may be a variety of materials such as rope, chain, steel wire.
  • the water structure may be aquaculture equipment, buoys, buoys, submersible plants, floating sofas, barges or mega floats, and the submersible plants may be wind turbines, tidal current generators, wave generators, marine helicopters or oil drilling vessels.
  • the cut structure includes a variety of cables, gas pipes, oil pipes.
  • FIG. 12 is an exemplary view schematically showing a photobioreactor according to a fourth embodiment of the present invention.
  • the photobioreactor according to the fourth embodiment of the present invention is formed in a cylindrical shape and is arranged in parallel with the water surface, and has a filter function of a specific wavelength arranged side by side up and down.
  • Three culture vessels (10-4) Although the number of the culture vessels 10-4 is not limited, considering that the sunlight necessary for photosynthesis of the microalgae cannot be reached when the culture vessels 10-4 are placed too deeply, they are located within an appropriate depth. It needs to be limited.
  • the weight 60 hanging on one or more culture vessels (10-4) including the culture vessel (10-4c) located at the bottom of the culture vessels (10-4).
  • 12 shows an optical bioreactor in which a weight 60 is suspended only in the culture vessel 10-4c positioned at the bottom and the culture vessel 10-4b positioned in the middle, but the culture vessel positioned at the bottom thereof.
  • the weight 60 is suspended only in the (10-4c) or all culture vessels (10-4a, b, c). That is, the lowermost culture vessel (10-4c) should be configured so that the weight 60 is essentially suspended in order to maintain the overall arrangement and balance, but is selectively adopted for the remaining culture vessels (10-4a, b) Can be.
  • the number of culture vessels may be increased even further.
  • all or part of the upper portion of the culture vessel may be water-repellent coating in order to prevent water condensation.
  • the culture vessel may be connected to a water structure (not shown), cutlery structure or water surface installed on the sea through a coupling means (not shown) instead of the support means 30.
  • the coupling means may be a variety of materials such as rope, chain, steel wire.
  • the water structure may be aquaculture equipment, buoys, buoys, submersible plants, floating sofas, barges or mega floats, and the submersible plants may be wind turbines, tidal current generators, wave generators, marine helicopters or oil drilling vessels.
  • the cut structure includes a variety of cables, gas pipes, oil pipes.
  • the photobioreactor according to the fifth embodiment of the present invention is formed in an elongated cylindrical shape and has a culture vessel 10-5 connected to the support means 30 in a form divided into parallel to the water surface. Include. In this case, the culture vessel 10-5 may be in a state where it can be flipped more freely by the movement of waves or seawater. On the other hand, all or part of the upper portion of the culture vessel may be water-repellent coating in order to prevent water condensation.
  • the culture vessel may be connected to a water structure (not shown), cutlery structure or water surface installed on the sea through a coupling means (not shown) instead of the support means 30.
  • the coupling means may be a variety of materials such as rope, chain, steel wire.
  • the water structure may be aquaculture equipment, buoys, buoys, submersible plants, floating sofas, barges or mega floats, and the submersible plants may be wind turbines, tidal current generators, wave generators, marine helicopters or oil drilling vessels.
  • the cut structure includes a variety of cables, gas pipes, oil pipes.
  • the photobioreactor according to the sixth embodiment of the present invention is formed to have a central cylindrical portion 17 and a pair of conical portions 19 at both ends of the cylindrical portion, as shown in FIG. It comprises a culture vessel (10-6) connected to the support means (30 ') through a rope (25) connected to the vertex of the conical portion (19).
  • the culture vessel 10-8 may be in a state in which the culture vessel 10-8 can be flipped more freely by the movement of waves or sea water, as compared with the case of the culture vessel 10-5 according to the fifth embodiment.
  • all or part of the upper portion of the culture vessel may be water-repellent coating in order to prevent water condensation.
  • a plurality of pairs of connecting rings 39 are provided to the support means 30 ′. It is shown that it is possible to easily scale up by connecting the culture vessels (10-6) to each of the connecting ring (39) paired. Although not shown separately, it is also possible to increase the width of the support means 30 'in the width direction, and thus, it can be expected that the scale for commercial mass culture is possible.
  • 15 to 17 is an exemplary view schematically showing a culture vessel of the photobioreactor according to the seventh embodiment of the present invention.
  • the culture vessel 10-7 having a cylindrical shape.
  • the culture vessel 10-7 accommodates microalgae as an inner space defined by the outer wall 11 and the outer wall 11 formed of a membrane having a predetermined thickness. It consists of the reaction chamber 1 which can be made.
  • one surface of the outer wall includes an optical filter region 13 that can selectively pass or block the light wavelength introduced into the culture vessel 10-7, as shown in Figure 15 and 16 optical filter region 13 ) May be formed as an optical filter pattern 13a having a pattern shape having a predetermined shape.
  • all or part of the upper portion of the culture vessel may be water-repellent coating in order to prevent water condensation.
  • the outer wall of the culture vessel 10-7 may include a semi-permeable membrane in part or all.
  • the semi-permeable membrane enables the inflow and outflow of oxygen, nitrogen or carbon dioxide to the outside air, and the inflow and outflow of water and nutrients with the seawater, but blocks the inflow and outflow of microalgae.
  • the microalgae contained in the culture vessel consisting of such a semi-permeable membrane is suspended in the sea water, it is possible to naturally receive the material required for cultivation from the external environment in isolation from the external environment.
  • the outer wall 11 basically has light transmittance. Therefore, when exposed to a light source, for example, the sun, sunlight from the sun passes through the outer wall 11 and is supplied to the microalgae contained in the reaction chamber 1.
  • the outer wall 11 includes an optical filter pattern 13a that can reduce a part of the light energy input from the light source.
  • the optical bioreactor according to the seventh exemplary embodiment of the present invention may adjust the optical energy input by using the shape or density of the optical filter pattern 13a formed on the outer wall 11. For example, when a large amount of light energy is input, the pattern shape of the optical filter pattern 13a may be increased or the density may be increased to increase the light energy reduced by the optical filter pattern 13a. If less, you can do the opposite.
  • the light energy required for culturing may have a different range from each other, or even one microalgae may have a different light energy for each step in the culturing process.
  • the induction production process of astaxanthin in Haematococcus may be performed in two steps. That is, in the first stage of cultivation, astaxanthin is induced with high light intensity in the second stage after sufficient production of cells by supplying relatively low light energy.
  • an optimal light energy condition for culturing microalgae may be realized by appropriately selecting the optical filter pattern 13a on the outer wall 11 exposed to the light source. .
  • the amount of light or the light energy of the solar light that is selectively introduced into the reaction chamber 1 can be adjusted according to the amount of solar radiation. have.
  • the optical filter patterns 13a may be arranged in parallel with each other in a stripe form, or may have a lattice arrangement form as shown in FIG. 16. In this case, the light energy blocked by the optical filter pattern 13a may be adjusted by appropriately adjusting the width or number of stripes.
  • the light blocking pattern according to the present invention may be any shape as long as it meets the above-described purpose. Although not shown, various shapes such as a circle, a polygon, a spiral, and a zigzag are possible.
  • a portion (or heat conversion region) for absorbing light wavelengths from a light source and converting them into heat may be formed on part or all of the outer wall of the photobioreactor.
  • the culture vessel 10-7 having such a configuration When the culture vessel 10-7 having such a configuration is suspended in seawater or fresh water, during a low temperature period or season, the culture vessel 10-7 absorbs a portion of the light wavelength incident from the light source and converts it into heat. Increasing the internal temperature can improve photosynthetic efficiency. Therefore, the efficiency of photosynthesis of the microalgae may be partially prevented due to the decrease in temperature.
  • the heat conversion region according to the present exemplary embodiment may form all one surface of the outer wall as shown in FIG. 17, or may be formed in various patterns in the same manner as the above-described optical filter pattern.
  • the culture vessel according to the seventh embodiment of the present invention uses light energy absorbed by using the shape or density of the heat conversion pattern 13a formed on the outer wall 11. I can regulate it. For example, in order to increase the absorbed light energy, the pattern shape of the heat conversion pattern 13a may be increased or the density may be increased to increase the amount of light energy converted into heat by the heat conversion region 13.
  • This heat conversion pattern may be used in combination with the optical filter pattern. That is, an optical filter region may be applied to a part of the outer wall, and a heat conversion pattern may be used for the remaining part.
  • Both the above-described optical filter pattern and / or the thermal conversion pattern may be formed of a material having an optical filter characteristic or a thermal conversion characteristic of the corresponding region of the light transmissive film itself constituting the outer wall.
  • the material having the optical filter characteristics are lead chromate (PbCrO 4 ), yellow iron oxide (FeO (OH) or Fe 2 O 3 ⁇ H 2 O), cadmium yellow (CdS or CdS + ZnS), titanium yellow (TiO 2 ⁇ NiO ⁇ Sb 2 O 3), chrome orange (PbCrO 4 ⁇ PbO), molybdenum orange (PbCrO 4 ⁇ PbMoO 4 ⁇ PbSO 4), red iron oxide (Fe 2 O 3), Red lead (Pb 3 O 4), cadmium red (CdS + CdSe), manganese violet (NH 4 MnP 2 O 7) , Prussian blue (Fe (NH 4) Fe ( CN) 6 ⁇ xH 2 O), ultra
  • the pigment may be a natural pigment other than heavy metals, and the natural pigments include Gardenia yellow, blue blue, duct blue, safflower red, Schisandra chinensis, locust yellow cattle, mugwort green cattle, and astaxanthin. Tin, anthocyanin, phycoerythrin, xanthophyll, fucoxanthin, phycocyanin lasveratol, carotenoids, benzoquinone, siconin, alizinine, anthraquinone, naphthoquinone, corycin, flavin, isoflavin or these Two or more of the mixed colors may be used.
  • the material having the heat conversion characteristics are materials capable of absorbing infrared rays, near infrared rays, visible rays or ultraviolet rays, and may be organic or inorganic pigments or dyes, organic pigments, metals, metal oxides, metal carbides or metal borides.
  • Black pigments such as carbon black, pigments of macrocyclic compounds having absorption in the near-infrared region from visible such as phthalocyanine and naphthalocyanine, organic dyes (cyanine dyes such as indolenin dyes, anthraquinone dyes, azurene dyes, Dyes of organometallic compounds such as phthalocyanine-based dyes) and dithiol nickel complexes.
  • the optical filter area or heat conversion area may be implemented by attaching the optical filter pattern film or the heat conversion pattern film separately to all or part of the outer wall of the culture vessel.
  • the optical filter pattern film or the heat conversion pattern film may be a tape that can be attached and detached to the outer wall (11).
  • the sun is the most important light source in the photobioreactor which is supported in seawater or freshwater and cultures microalgae.
  • the microalgae production method in consideration of the brightness according to the position of the sun.
  • Seasons change with the Earth's orbit, and consequently, the extent to which solar energy reaches the earth's surface is different.
  • night and day exist according to the rotation of the earth, and during daytime, the degree of solar energy arrival varies according to the rotation cycle of the earth.
  • microalgae use light energy from the sun to receive light energy above a certain intensity, photosynthetic mechanisms are destroyed and photosynthesis is no longer possible, or it accumulates secondary metabolites to overcome high light energy. If the purpose is cell production, it may produce unwanted products.
  • the sunlight even when the sunlight is absorbed and converted to heat, it may have different characteristics depending on the season or time zone. In other words, it is necessary to further increase the heat conversion rate in winter when the sun exposure time is low and the average temperature is low compared to summer when the sun exposure time is long and the average temperature is high.
  • the above-described problem can be solved by designing the shape or density of the light blocking pattern or the heat conversion pattern in response to the average amount of sunshine calculated for each period.
  • the optical filter pattern film or the heat conversion pattern film is the above-mentioned tape, adhesion and detachment are easy, and thus, the light energy or heat conversion rate from the solar light introduced into the photobioreactor can be adjusted by using this property. .
  • FIG. 18 illustrates a method of controlling the light energy of the sun introduced into the photobioreactor for each period using a light blocking pattern film in the form of tape as an example.
  • the average amount of sunshine for each period is calculated (S1).
  • the designed light blocking pattern film is prepared (S2). Therefore, a plurality of light blocking pattern films are prepared for each period. For example, when the amount of sunshine is too high, the shape or density of the barrier layer pattern is increased, thereby increasing the light energy reduced thereby. On the contrary, when the amount of sunshine is low, the shape or density of such a pattern is reduced to increase the input light energy.
  • the light blocking pattern film prepared according to the corresponding time is attached to one surface into which sunlight is input in the photobioreactor (S3).
  • the optical filter pattern film prepared by each phase can be attached and detached. Therefore, when a certain time is over and the next time arrives, the optical filter pattern film conventionally attached to the photobioreactor is removed and removed. The filter pattern film is attached again.
  • the optical energy input to the photobioreactor may be appropriately adjusted at each time by using the optical filter pattern so that the appropriate optical energy may be supplied to the microalgae.
  • the photobioreactor floating in the sea and cultivating with sunlight, it is possible to economically mass-produce microalgae by increasing the cultivation efficiency by using the light blocking pattern corresponding to the sunshine amount which is not constant at each time. do.
  • This method can be equally applied to a heat conversion pattern film in the form of a tape.
  • the culture vessel of the photobioreactor according to the present invention includes an outer wall having a predetermined thickness and a reaction chamber defined by the outer wall and having an inner space in which microalgae and a medium are accommodated, and the outer wall has a plurality of different optical properties. May comprise a membrane.
  • the outer wall may include a plurality of films having different light transmittances (or light blocking rates), light transmittance characteristics (optical filter characteristics) according to wavelength ranges, and reflectances.
  • the outer wall may further include a plurality of membranes having different transmittances according to materials.
  • FIG. 19 is a perspective view of a plate culture vessel 10-8 according to an eighth embodiment of the present invention.
  • the plate culture vessel (10-8) has a rectangular parallelepiped form.
  • the outer wall 11 includes different films having different optical properties and spaced apart vertically.
  • the first film 2 having a relatively low light transmittance forms an upper film of the rectangular parallelepiped
  • the second film 3 having a higher light transmittance than the first film 2 may form a lower film.
  • the inner space defined by the outer wall including the first membrane 2 and the second membrane 3 becomes the reaction chamber 1 in which the microalgae 7 and the medium are accommodated.
  • the first layer 2 forms the upper layer and the second layer 3 forms the lower layer.
  • the present invention is not limited thereto.
  • the culture vessel 10-8 is inverted, the first layer 2 is turned over.
  • the silver lower layer and the second layer 3 may form the upper layer.
  • all or part of the upper portion of the culture vessel may be water-repellent coating in order to prevent water condensation.
  • the culture vessel 10-8 may further include a gas inlet 4 capable of supplying gas into the reaction chamber 1 and a gas outlet 5 for discharging the gas.
  • a sampling port 6 for taking a sample for confirming the degree of culture of the microalgae.
  • the first chamber (2) and the second membrane (3) having different light transmittances are used in the reaction chamber (1).
  • the input light energy can be adjusted by time or step.
  • the culture vessel (10-8) of the photobiological incubator according to the eighth embodiment of the present invention is suspended in seawater or freshwater and exposed to sunlight, it is selectively introduced into the reaction chamber (1) in response to the solar radiation amount. The amount or intensity of sunlight can be adjusted.
  • microalgae use light energy generated from the sun, the microalgae are destroyed when the photosynthetic device receives the light energy above a certain level of light, and thus photosynthesis is no longer possible or the secondary metabolites are accumulated to overcome high light energy. If the purpose is cell production, it may produce unwanted products.
  • the light energy required for culturing may have a different range from each other, or even one microalgae may have a different light energy for each step in the culturing process.
  • the induction production process of astaxanthin in Haematococcus may be performed in two steps. That is, in the first stage of cultivation, astaxanthin is induced with high light intensity in the second stage after sufficient production of cells by supplying relatively low light energy.
  • the optimum brightness required for the culture of microalgae by appropriately selecting the surface exposed to sunlight when suspended in the sea or lake You can implement conditions.
  • the first film 2 having low light transmittance is disposed on the upper portion so as to be exposed to sunlight, thereby appropriately reducing the solar energy supplied to the reaction chamber 1 so that the light is deteriorated. It is possible to prevent the phenomenon and to supply the light energy appropriate to the cell.
  • the culture vessels (10-8) are turned upside down to expose the second membrane (3) having high transmittance to sunlight through the change of position of the upper and lower membranes to the microalgal growth. Efficient cultivation of microalgae through proper light energy supply is possible.
  • the plurality of films having different light transmittances from each other may be made of a material having different light transmittances from each other.
  • it can comprise by attaching the material which has a different light transmittance, for example, a light shielding film or a tape, on a light transmissive film.
  • a plurality of films having different light transmittances may be configured by forming various types of optical filter patterns capable of controlling light transmittances on the light transmissive films.
  • FIG. 20A illustrates an example in which a pattern for blocking sunlight is not formed
  • FIG. 20C illustrates an example in which sunlight is completely blocked
  • Figure 20 (b) is made to block the solar light a certain ratio, for example, 30, 50, 70%.
  • the optical filter pattern may itself have a property of not transmitting light or only a portion of light.
  • the optical filter pattern may be formed on the film material itself or by attaching a light blocking film or tape to the light transmitting film.
  • the present invention is not limited thereto, and it is obvious that the present invention can be applied to a light source other than sunlight, for example, an LED lamp. The same applies to the following examples.
  • the optical wavelength which is one of the important optical factors in culturing the microalgae it is possible to improve the concentration of the microbial cells and the concentration of the metabolite produced from the microalgae by supplying the optical wavelength of the specific wavelength region to the microalgae.
  • Microalgae have chlorophyll and various pigments for photosynthesis.
  • the wavelength used for photosynthesis is a visible light region between 300 and 700 nm
  • the green algae mainly absorb the light wavelength of the red or blue region to be used for photosynthesis.
  • the species, one of the green alga Chlorella is when supplying a light wavelength energy of the red area by using the red light-emitting diode (680nm), will supply the mixed light and blue light, a short wavelength of the light energy of the green-
  • Haematococcus Haematococcus had higher growth rate, and the production concentration of astaxanthin, a kind of carotenoid with excellent antioxidant power, was changed by culturing using any light wavelength or region (see Fig. 21). ).
  • microalgae growth of microalgae is known to be inhibited when exposed to ultraviolet light for a long time.
  • an optical bioreactor including a plurality of membranes having different optical filter characteristics may be provided. That is, wavelength ranges that can be transmitted in the optical wavelength may have different ranges between the plurality of films.
  • the first membrane 2 and the second membrane 3 of the culture vessel 10-9 may have different wavelengths. It can be manufactured to transmit light wavelength. If the eighth embodiment is to adjust the amount of light transmitted irrespective of the specific wavelength, the ninth embodiment is different in that it has a selective transmittance to block the transmission of light in the wavelength range of the specific region. On the other hand, all or part of the upper portion of the culture vessel may be water-repellent coating in order to prevent water condensation.
  • the first membrane 2 having the optical filter function is exposed to a light source, for example, sunlight. Only the wavelengths of some regions of the sunlight supplied to the film 2 can selectively transmit or block. Therefore, it is possible to intensively supply the wavelength of the specific region to the microalgae contained in the reaction chamber (1).
  • a light source for example, sunlight.
  • the culture vessel (10-9) is reversed to change the position of the upper and lower sides, the second film 3 is exposed to the light source as the upper film can obtain the desired effect.
  • the above-described 'wavelength region' may be classified into, for example, a blue series, a red series, or a green series in the solar wavelength.
  • the wavelength region to be transmitted or blocked may be appropriately selected depending on the type of microalgae to be cultured.
  • the film having the optical filter function may be prepared by mixing a chemical component capable of absorbing light wavelengths in a specific wavelength region with a plastic or polymer material. These chemical components may be included in the pigment pigments, Table 1 shows the available chemical components according to the pigment pigments.
  • the natural pigments include Gardenia Yellow, Blue Blue, Dak Blue, Red Safflower, Schizandra Red, Glaucoma Yellow, Mugwort Green, Astaxanthin, Anthocyanin, Picoeryedrin, Xanthophyll, Fucoxanthine, Picositine Non-rasveratol, carotenoids, benzoquinone, siconin, alizinine, anthraquinone, naphthoquinone, corysine, flavin, isoflavin or a mixture of two or more of these may be used.
  • the first film 2 may be a coating material containing a pigment as shown in Table 1 on the light transmitting film, or a film or tape for an optical filter adhered thereto.
  • the optical filter film or tape is an optical film or tape designed to transmit or block only a specific wavelength region.
  • the present embodiment may also form a plurality of films having different optical filter characteristics by forming optical filter patterns having various shapes as illustrated in FIGS. 20A to 20C on the light transmissive film.
  • the culture vessel (10-10) of the photobioreactor according to the tenth embodiment of the present invention may be composed of a plurality of membranes whose outer walls are different from each other in light reflectance.
  • the first film 2 is located at the top
  • the second film 3 is located at the bottom
  • the second film 3 is a light wavelength transmitted through the first film 2. It may have a property of reflecting again.
  • the light wavelength that reaches the second film 3 without being supplied to the microalgae contained in the reaction chamber 1 is transmitted to the reaction chamber. It is reflected by (1) and supplied to microalgae. Therefore, it is possible to improve the supply rate finally supplied to the microalgae 7 of the light wavelengths transmitted through the first film 2.
  • the second film 3 may be manufactured by stacking a reflective member 8 having a high reflectance on a portion of the light transmissive film.
  • the reflective member may be a reflective film having a high reflectance on one surface, or a reflective tape.
  • the reflective member 8 may diffuse the reflected light wavelengths and evenly resupply the reflected light wavelengths in the internal space 1. To this end, irregularities for diffuse reflection may be further formed on the surface of the reflective member 1.
  • all or part of the upper portion of the culture vessel may be water-repellent coating in order to prevent water condensation.
  • the culture vessel of the photobioreactor according to the eleventh embodiment of the present invention may constitute an outer wall of a plurality of membranes which can select different materials from each other.
  • the first membrane 2 in contact with the atmosphere of the culture vessel 10-9 of FIG. 19 is formed of a semi-permeable membrane capable of flowing in and out of the outside atmosphere and oxygen or carbon dioxide, and is in contact with seawater or fresh water.
  • the second membrane 3 having a predetermined depth immersed in sea water or fresh water may be formed as a semi-permeable membrane that allows inflow and outflow of water and nutrients from seawater or freshwater, but blocks outflow and outflow of microalgae.
  • the microalgae accommodated in the culture vessel (10-9) made of such a semi-permeable membrane when suspended in sea water or fresh water, can be naturally supplied from the external environment the material required for cultivation in an isolated state from the external environment.
  • carbon dioxide in the atmosphere may be introduced into the first membrane 2 positioned above the water surface during suspension, and the carbon dioxide may be removed by photosynthesis of the microalgae contained in the reaction chamber 1.
  • oxygen formed by the photosynthesis is discharged to the atmosphere through the first film (2).
  • the second membrane (3) in contact with sea water or fresh water may be able to flow in and out of the nutrients, such as seawater or fresh water from the outside.
  • the excreta discharged during the growth of microalgae and metabolites that interfere with the growth can be naturally removed when the seawater or freshwater is discharged to the outside by melting in seawater or freshwater. Therefore, no purification or medium replacement is required.
  • the outer wall of the photobioreactor according to the present invention is made of a light transmissive material, glass, plastic or polymer material, a semi-permeable membrane may be used.
  • the shape of the photobioreactor can be produced in various forms, it can be selected from the group consisting of a rectangular flat plate (cylinder) reactor, but is infinite in a wide space that is easy to expand, such as the ocean Any shape can be used as long as it can apply solar energy, which is the energy of nature, to be customized for microalgae growth.
  • 23 and 24 are illustrated in the form of a culture vessel of such a photobioreactor cylindrical and oval.
  • such a photobioreactor may be supported by itself, but may further include a fixing device that can be fixed in a certain range of the lifting means and the support position for floating in some cases.
  • the culture vessel may be connected to a water structure (not shown), cutlery structure or water surface installed on the sea through a coupling means (not shown) instead of the support means 30.
  • the coupling means may be a variety of materials such as rope, chain, steel wire.
  • the water structure may be aquaculture equipment, buoys, buoys, submersible plants, floating sofas, barges or mega floats, and the submersible plants may be wind turbines, tidal current generators, wave generators, marine helicopters or oil drilling vessels.
  • the cut structure includes a variety of cables, gas pipes, oil pipes.
  • the present invention is not limited thereto, and it can be used in the same manner even when using a general artificial light source, for example, a light emitting diode.
  • the photobioreactor for culturing microalgae having a specific wavelength filter function may be utilized for culturing microalgae in the following manner.
  • 25 and 26 illustrate an example in which a group of flat photobioreactors and a cylindrical photobioreactor is formed by gathering them.
  • reaction chamber 2 first film
  • microalgae 8 reflection member
  • sampling port 11 outer wall
  • the photobioreactor of the present invention is suitable for the cultivation of commercial microalgae for the purpose of producing bioenergy, and in this process, it is eco-friendly by removing quantitatively the carbon dioxide which is the main culprit of environmental problems related to global warming. Can be.

Abstract

본 발명은 미세조류의 대량배양을 위한 광생물 반응기에 관한 것으로서, 태양광으로부터 파장 또는 영역 중 일부를 선택적으로 투과 또는 차단할 수 있는 광필터 영역 및/또는 태양광으로부터 파장 또는 영역 중 일부를 선택적으로 흡수하여 열로 전환하는 열전환 영역이 구비된 외벽 및 상기 외벽에 의해 한정된 내부공간으로서 미세조류를 수용하도록 입체적으로 형성되는 반응실을 포함하는 배양용기; 및 상기 배양용기가 태양광에 노출될 수 있도록 수면 근처에 위치시키기 위해, 상기 배양용기에 연결되는 부양수단 또는 상기 배양용기를 수저면 또는 수상구조물에 연결하기 위한 결합수단을 포함하는 미세조류 대량배양을 위한 광생물 반응기가 제공된다.

Description

미세조류 대량배양을 위한 광생물 반응기 및 이를 이용한 미세조류 배양방법
본 발명은 미세조류를 대량으로 배양할 수 있도록 하는 광생물 반응기에 관한 것으로서, 더욱 상세하게는 특정 광파장이나 영역만을 투과하거나 차단하는 필터기능이 있는 미세조류 대량배양을 위한 광생물 반응기에 관한 것이다.
광합성 단세포 미생물인 미세조류는 광합성을 통하여 단백질, 탄수화물, 지방등 다양한 유기물을 생산이 가능하다. 특히 최근에는 기능성 다당류, 카로테노이드, 비타민, 불포화지방산등 고부가가치 산물의 생산뿐 만아니라 지구 온난화의 주범이 이산화탄소 제거의 목적에 최적 생물체로 평가 받고 있다. 그 주요한 이유는 양적인면에서 주요한 지구 온난화의 주범인 이산화탄소를 효과적으로 제거하기위한 생물체 배가 시간(doubling time)이 육상 식물보다 짧고, 척박한 환경에서도 높은 성장성을 나타내며, 발전소나 공장에서 나오는 연소 가스를 직접적으로 사용할 수 있기 때문이다.
이산화탄소 제거와 연계하여, 유한한 에너지원인 화석연료를 대체할 생물학적 에너지 생산에도 큰 관심을 받고 있는데, 이는 미세조류가 이산화탄소를 고정하여 생체에 지질로 축적 하는 것이 가능한데 따른 것이다. 이렇게 축적된 지질을 이용한 바이오 디젤 생산에 많은 연구가 진행되고 있다. 그러나 미세조류를 이용한 이산화탄소의 제거 또는 바이오 에너지의 제조와 같은 유용한 산물의 대량생산을 위해서는 반드시 미세조류의 배양이 대규모적이고 고농도로 수행되어야 한다. 따라서 규모가 큰 배양설비의 구축과 관련된 기술이 필수적으로 요구되고 있다.
종래에는 옥외에 대규모의 연못(pond)을 조성하거나, 플랜트설비로서 관형의 광생물반응기를 설치하여 미세조류를 배양하여왔다. 또한, 옥외가 아닌 실내에 설치되는 여러 형태의 광생물 반응기가 미세조류를 배양하기 위한 배양설비로 사용되고 있다.
그러나 옥외 설치형 광생물 반응기의 경우 다른 미생물에 의한 오염(개방형 광생물 반응기), 과도한 설치, 유지보수 및 운영비용 그리고 사용가능한 육상공간의 부족과 같은 문제점을 가지고 있고, 실내 설치형 광생물 반응기의 경우 외부 광원을 필요로 하기 때문에 저렴한 미세조류 유래 생산품인 바이오에너지의 생산이라는 목적에 부합하지 않는다는 단점이 있다.
따라서 상업적인 대량배양을 위해서는 경제성 확보가 무엇보다 중요한 선결과제이며 따라서 저비용으로도 고농도의 배양이 가능하면서도 규모의 확대가 용이한 배양기술의 개발이 절실히 요구되고 있다.
본 발명은 상기와 같은 문제점을 포함하여 여러 문제점을 해결하기 위한 것으로서, 미세조류의 광이용 효율을 극대화한 광생물 반응기 및 그를 이용한 미세조류 배양방법을 제공하는 것을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.
본 발명의 일 관점에 따르면, 태양광으로부터 파장 또는 영역 중 일부를 선택적으로 투과 또는 차단할 수 있는 광필터 영역 또는 태양광으로부터 파장 또는 영역 중 일부를 선택적으로 흡수하여 열로 전환하는 열전환 영역이 구비된 외벽 및 상기 외벽에 의해 한정된 내부공간으로서 미세조류를 수용하도록 입체적으로 형성되는 반응실을 포함하는 배양용기; 및
상기 배양용기가 적정한 태양광도를 받을 수 있고, 태풍 등의 강풍에 파손되지 않도록 필요에 따라 수면이나 수면 아래 일정 깊이에 위치시키기 위해, 상기 배양용기에 연결되는 부양수단 또는 상기 배양용기를 수저면, 수저구조물 또는 수상구조물에 연결하기 위한 결합수단을 포함하는 미세조류 대량배양을 위한 광생물 반응기가 제공된다.
본 발명의 다른 관점에서, 태양광으로부터 파장 또는 영역 중 일부를 선택적으로 투과 또는 차단할 수 있는 광필터 영역 또는 태양광으로부터 파장 또는 영역 중 일부를 선택적으로 흡수하여 열로 전환하는 열전환 영역이 구비되는 외벽 및 상기 외벽에 의해 한정된 내부공간으로서 미세조류를 수용하도록 입체적으로 형성되는 반응실을 포함하고 제1막 및 상기 제1막과 다른 위치에서 상기 외벽의 일부를 이루며 상기 제1막과 다른 특석을 가지는 제2막을 포함하는 배양용기; 및
상기 배양용기가 태양광에 노출될 수 있도록 수면 근처에 위치시키기 위해, 상기 배양용기에 연결되는 부양수단 또는 상기 배양용기를 수저면, 수저구조물 또는 수상구조물에 연결하기 위한 결합수단을 포함하는 미세조류 대량배양을 위한 광생물 반응기가 제공된다.
본 발명의 또 다른 관점에서, 상술한 것 중 어느 하나의 광생물 반응기의 배양용기에 배양배지를 주입하고 미세조류를 접종하는 단계;
상기 배양용기를 밀봉하고 부양수단에 고정하거나 수저면, 수저구조물 또는 수상구조물에 고정한 후, 해양 또는 담수에 투입하는 단계; 및
상기 미세조류가 태양광에 의해 광합성을 수행하도록 방치하는 단계를 포함하는 광생물 반응기를 이용한 미세조류 배양방법이 제공된다.
도 1 내지 도 4는 본 발명의 제1실시예에 따른 광생물 반응기를 개략적으로 도시한 예시도이다.
도 5 내지 도 8은 본 발명의 제2실시예에 따른 광생물 반응기를 개략적으로 도시한 예시도이다.
도 9 내지 도 11은 본 발명의 제3실시예에 따른 광생물 반응기를 개략적으로 도시한 예시도이다.
도 12는 본 발명의 제4실시예에 따른 광생물 반응기를 개략적으로 도시한 예시도이다.
도 13은 본 발명의 제5실시예에 따른 광생물 반응기를 개략적으로 도시한 예시도이다.
도 14는 본 발명의 제6실시예에 따른 광생물 반응기를 개략적으로 도시한 예시도이다.
도 15 내지 17은 본 발명의 제7실시예에 따른 광생물 반응기를 개략적으로 도시한 예시도이다.
도 18은 테이프 형태의 광차단 패턴막을 이용하여 시기별로 광생물 반응기로 투입되는 태양의 광에너지를 조절하는 방법에 대한 순서도이다.
도 19는 본 발명의 제8실시예, 제9실시예 또는 제11실시예에 따른 광생물 반응기의 평판형 배양용기를 개략적으로 도시한 예시도이다.
도 20은 본 발명의 제8실시예에 따른 광생물 반응기의 배양용기의 일면에 형성할 수 있는 광차단 패턴의 형태를 개략적으로 도시한 예시도이다.
도 21는 본 발명의 광파장에 따른 미세조류 색소의 흡광도를 나타낸 그림이다.
도 22는 본 발명의 제10실시예에 따른 광생물 반응기의 배양용기를 개략적으로 도시한 예시도이다.
도 23 및 24은 본 발명의 일실시예에 따른 광생물 반응기의 배양용기의 형상을 예시적으로 도시한 예시도이다.
도 25는 도 23의 평판형 광생물 반응기를 군집의 형태로 제조한 것을 예시적으로 도시한 예시도이다.
도 26은 도 24의 원통형 광생물 반응기를 군집의 형태로 제조한 것을 예시적으로 도시한 예시도이다.
본 발명의 일 관점에 따르면, 태양광으로부터 파장 또는 영역 중 일부를 선택적으로 투과 또는 차단할 수 있는 광필터 영역 또는 태양광으로부터 파장 또는 영역 중 일부를 선택적으로 흡수하여 열로 전환하는 열전환 영역이 구비된 외벽 및 상기 외벽에 의해 한정된 내부공간으로서 미세조류를 수용하도록 입체적으로 형성되는 반응실을 포함하는 배양용기; 및
상기 배양용기가 미세조류의 생장에 적정한 태양광도에 노출되고 태풍, 해일 등 강력한 파도로부터 보호될 수 있도록 수면 바로 아래 또는 적정한 깊이에 위치시키기 위해, 상기 배양용기에 연결되는 부양수단 또는 상기 배양용기를 수저면, 수저구조물 또는 수상구조물에 연결하기 위한 결합수단을 포함하는 미세조류 대량배양을 위한 광생물 반응기가 제공된다.
이때, 상기 외벽의 전부 또는 일부가 광투과성 소재로 이루어질 수 있다. 상기 광투과성 소재는 유리, 폴리염화비닐(PVC), 테레프탈레이트(PET), 아크릴, 폴리스티렌(PS), 고밀도폴리에틸렌(HDPE), 저밀도폴리에틸렌(LDPE), 폴리프로필렌(PP), 폴리카보네이트(PC), 폴리아마이드(PA) 또는 이들 중 둘 이상의 적층 구조일 수 있다.
상기 외벽의 전부 또는 일부가 반투과성막일 수 있고, 상기 반투과성막은 셀룰로오스 아세테이트(cellulose acetate), 셀룰로오스 트리아세테이트(cellulose triacetate), 셀룰로오스 아세테이트-셀룰로오스 트리아세테이트 복합물(cellulose acetate-cellulose triacetate blends), 니트로셀룰로오스(nitrocellulose), 젤라틴(gelatin), 폴리아민(polyamine), 폴리이미드(polyimide), 폴리(에테르 이미드){poly(ether imide)}, 방향성 폴리아마미드(aromatic polyamide), 폴리벤지미다졸(polybenzimidazole), 폴리벤지미다졸론(polybenzimidazolone), 폴리아크릴니트릴(polyacrylonitrile), 폴리아크릴니트릴-폴리염화비닐 공중합체{polyacrylonitrile-poly(vinyl chloride) copolymer}, 폴리설폰(polysulfone), 폴리에테르설폰(polyethersulfone), 폴리(디메틸페닐렌 옥사이드){poly(dimethylphenylene oxide)}, 폴리(비닐리덴 플루오라이드){poly(vinylidene fluoride)}, 다중전해질 복합체(polyelectrolyte complexes), 폴리올레핀(polyolefin), 폴리(메틸 메타크릴레이트){poly(methyl methacrylate)}, 폴리비닐알콜(polyvinyl alcohol) 및 이들의 공중합체로 구성된 군으로부터 선택되는 적어도 하나의 중합체를 포할 수 있다.
상기 적정 깊이는 태양광이 투과되는 깊이를 의미하며, 1 cm 내지 50 m일 수 있고, 10 cm 내지 25 m일 수 있고, 10 cm 내지 10 m일 수 있다. 너무 깊은 심도로 내려가면 광합성을 제대로 수행할 수 없고, 너무 얕을 경우 태풍 등 강풍에 의해 파손될 가능성이 있다.
본 발명의 다른 관점에서, 태양광으로부터 파장 또는 영역 중 일부를 선택적으로 투과 또는 차단할 수 있는 광필터 영역 또는 태양광으로부터 파장 또는 영역 중 일부를 선택적으로 흡수하여 열로 전환하는 열전환 영역이 구비되는 외벽 및 상기 외벽에 의해 한정된 내부공간으로서 미세조류를 수용하도록 입체적으로 형성되는 반응실을 포함하고 제1막 및 상기 제1막과 다른 위치에서 상기 외벽의 일부를 이루며 상기 제1막과 다른 특석을 가지는 제2막을 포함하는 배양용기; 및
상기 배양용기가 미세조류의 생장에 적정한 태양광도에 노출되고 태풍, 해일 등 강력한 파도로부터 보호될 수 있도록 수면 바로 아래 또는 적정한 깊이에 위치시키기 위해, 상기 배양용기에 연결되는 부양수단 또는 상기 배양용기를 수저면, 수저구조물 또는 수상구조물에 연결하기 위한 결합수단을 포함하는 미세조류 대량배양을 위한 광생물 반응기가 제공된다.
이 때, 상기 배양용기는 제1막 및 상기 제1막과 다른 위치에서 상기 외벽의 일부를 이루며, 상기 제1막과 다른 특성을 가지는 제2막을 포함할 수 있다. 상기 제1막과 상기 제2막은 광투과 특성이 서로 다를 수 있다. 이 경우, 상기 제1막과 상기 제2막은 투과될 수 있는 파장영역이 서로 다를 수 있다. 선택적으로, 상기 제1막과 상기 제2막은 물질 투과 특성이 다를 수 있다. 이 경우, 상기 제1막은 산소 또는 이산화탄소에 대한 선택적 투과성을 가지는 반투과막을 포함하고, 상기 제2막은 물 및 영양염류에 대해 선택적 투과성을 가진 반투막을 포함할 수 있다. 선택적으로, 상기 제1막과 상기 제2막은 서로 다른 광반사 특성을 가지며, 상기 제1막을 투과한 광파장을 상기 제2막이 반사하여 상기 반응실로 공급할 수 있다.
본 발명의 다른 측면에서, 상기 광필터 영역 또는 열전환 영역은 소정의 형상을 가진 패턴일 수 있다. 이 경우, 상기 패턴은 상기 투입되는 광에너지에 대응하여 그 형상 또는 밀도가 변경되도록 설계될 수 있다. 선택적으로서, 상기 광차단 영역 또는 열전환 영역은 광투과성막; 및 상기 외벽의 일면에 부착된 광차단 패턴막 또는 열전환 패턴막을 포함할 수 있다. 이 경우, 상기 광차단 패턴막 또는 열전환 패턴막은 상기 광투과성막에 접착 및 탈착이 가능한 테이프일 수 있다.
본 발명의 또 다른 측면에서, 상기 광필터 영역은 도색, 코팅 또는 색소 혼합을 통해 제조될 수 있다. 이 경우 상기 광필터 영역은 크롬산납(PbCrO4), 황색산화철(FeO(OH) 또는 Fe2O3·H2O), 카드뮴옐로(CdS 또는 CdS+ZnS), 티타늄옐로(TiO2·NiO·Sb2O3), 크롬오렌지(PbCrO4·PbO), 몰리브데늄오렌지(PbCrO4·PbMoO4·PbSO4), 적색산화철(Fe2O3), 광명단(Pb3O4), 카드뮴레드(CdS+CdSe), 망간바이올렛(NH4MnP2O7), 감청(Fe(NH4)Fe(CN)6·xH2O), 군청(Na6~8Al6Si6O24S2~4), 코발트블루(CoO·Al2O3), 크롬그린(크롬산납 + 감청), 에메랄드 그린(Cu(CH3CO2)2Cu(AsO2)2) 및 이들의 혼합물로 이루어지는 군에서 선택되어지는 어느 하나 이상의 안료에 의한 도색, 코팅 또는 색소 혼합을 통해 제조될 수 있다. 선택적으로 상기 안료로는 중금속계가 아닌 천연색소가 사용될 수 있는데, 상기 천연색소에는 치자황색소, 쪽 청색소, 닥 청색소, 홍화 적색소, 오미자 적색소, 오배자 황색소, 쑥 녹색소, 아스타잔틴, 안토시아닌, 피코에리드린, 잔토필, 푸코잔틴, 피코시아닌라스베라톨, 카로티노이드, 벤조퀴논, 시코닌, 알리자닌, 안트라퀴논, 나프토퀴논, 코리신, 플라빈, 이소플라빈 또는 이들 중 둘 이상의 혼합색소가 사용될 수 있다.
한편, 본 발명의 다른 측면에서, 상기 열전환 영역은 광열변환물질을 포함할 수 있다. 상기 광열변환물질은, 조사되는 광에너지를 열에너지로 변환하는 기능을 갖는 물질이다(대한민국 특허공개 제2004-0071142호). 이 경우, 상기 광열변환물질은 적외선, 근적외선, 가시광선 또는 자외선을 흡수할 수 있는 물질로서, 유기 또는 무기의 안료나 염료, 유기색소, 금속, 금속산화물, 금속탄화물 또는 금속붕화물일 수 있다.
본 발명의 다른 측면에서, 광에너지를 받는 상기 반응용기의 상부의 전부 또는 일부는 습기나 물방울이 생기지 않도록 추가적으로 발수코팅될 수 있다.
본 발명의 다른 측면에서, 태양광의 범위 내에서 두 영역 이상의 파장대가 투과하도록 상기 광필터 영역이 수평 또는 수직적으로 순차 배열되거나, 격자 모양으로 배열되어 파장의 비율 조절이 가능할 수 있다.
본 발명의 또 다른 측면에서, 상기 수상구조물은 양식장 설비, 부표, 등부표, 수중플랜트, 부유식 소파제, 바지선 또는 메가플로트일 수 있고, 상기 수중플랜트는 풍력발전장치, 조류발전장치, 파력발전장치, 해양헬리포트 또는 석유시추선일 수 있다. 한편, 상기 수저구조물은 각종 케이블, 가스관, 송유관을 포함한다.
아울러, 상기 배양용기의 내부 또는 외부에 배치되어 상기 배양용기의 입체적 형상을 유지하는 형상유지 틀을 추가적으로 포함할 수 있다.
본 발명의 또 다른 측면에서, 상기 배양용기와 상기 부양수단은 길이조절이 가능한 하나 이상의 로프로 연결되며, 상기 배양용기의 하부에 매달리는 무게추를 추가적으로 포함하여, 상기 무게추 및 상기 로프 길이를 조절함으로써 상기 배양용기가 설치되는 수심을 조절할 수 있다. 선택적으로, 상기 배양용기의 하부에 연결되는 기체공급관 및 상기 기체공급관을 통해 외부공기를 상기 배양용기에 공급하는 기체공급수단을 추가적으로 포함하여, 기포에 의한 혼합작용으로 상기 배양용기 내에서 미세조류가 고르게 분산될 수 있다. 선택적으로, 상기 배양용기는 역원추형으로 형성되며, 꼭지점에 상기 기체공급관 및 상기 무게추가 연결될 수 있다.
한편, 상기 배양용기는 상부의 수직원통형 부분과 하부의 역원추형 부분을 갖도록 형성되어 가스공급을 통한 세포의 혼합을 촉진시키고 세포의 침잠을 방지하며, 상기 역원추형 부분의 꼭지점에 상기 기체공급관 및 상기 무게추가 연결될 수 있다. 본 발명의 또 다른 측면에 따르면, 상기 배양용기가 적어도 두 개 이상 상하로 배열되도록 연결되며, 상기 무게추는 최하부에 위치하는 배양용기를 포함하는 하나 이상의 상기 배양용기에 하나 이상 매달릴 수 있다.
본 발명의 또 다른 측면에 따르면, 상기 부양수단이 서로 소정의 간격으로 유지되는 한 쌍 이상의 연결지점을 구비하며, 상기 배양용기는 길이가 길고 폭이 좁은 형상으로 형성되고, 길이방향 양단부가 쌍을 이루는 상기 연결지점에 하나 이상의 로프로 각각 연결되어 상기 배양용기가 파도나 해수의 이동에 의해 자유롭게 뒤집힐 수 있다. 선택적으로, 상기 배양용기는 길쭉한 원통형으로 형성되어 수면과 나란하게 뉘어진 형태로 상기 부양수단, 상기 수상구조물 또는 수저 구조물에 연결될 수 있다. 다른 실시 형태에 따르면, 상기 배양용기는 중앙의 원통형 부분과 이 원통형 부분의 양단에 한 쌍의 원추형 부분을 갖도록 형성되며, 각 원추형 부분의 꼭지점에 각각 상기 로프가 연결될 수 있다.
본 발명의 또 다른 관점에서, 상술한 것 중 어느 하나의 광생물 반응기의 배양용기에 배양배지를 주입하고 미세조류를 접종하는 단계;
상기 배양용기를 밀봉하고 부양수단에 고정한 후, 해양 또는 담수에 투입하는 단계; 및
상기 미세조류가 태양광에 의해 광합성을 수행하도록 방치하는 단계를 포함하는 광생물 반응기를 이용한 미세조류 배양방법이 제공된다.
이, 상기 미세조류는 클로렐라, 해마토코커스, 보트리오코커스, 세네데스무스, 난노클롭시스, 난노클로리스, 스피룰리나, 클라미도모나스, 패오닥탈리엄, 두날리엘라, 키조카이트리움, 니쯔키아, 테트라셀미스, 포피리디움, 시아노박테리아를 포함할 수 있다. 이때 상술한 미세조류는 광생물 반응기 내에서 카로테노이드, 균체, 파이코빌리프로테인, 지질, 탄수화물, 불포화지방산, 단백질을 생산할 수 있다.
이하, 본 발명의 바람직한 실시예를 첨부되는 도면을 참조하여 더욱 상세하게 설명한다. 단, 하기 실시예 및 도면은 본 발명을 구체적으로 예시하는 것이며, 본 발명의 내용이 하기 실시예 및 도면에 의해 한정되는 것은 아니다.
도 1 내지 도 4는 본 발명의 제1실시예에 따른 광생물 반응기를 개략적으로 도시한 예시도이다. 본 발명의 제1실시예에 따른 광생물 반응기는, 도 1에 도시한 바와 같이, 배양용기(10-1)와, 상기 배양용기(10-1)를 태양광에 노출될 수 있도록 수면 근처에 위치시키기 위해 배양용기(10-1)와 연결되는 부양수단(30)을 포함한다.
구체적으로, 배양용기(10-1)는 소정의 두께를 가지는 막으로 형성되고, 태양광으로부터 파장 또는 영역 중 일부를 선택적으로 투과 또는 차단할 수 있는 광필터 영역 또는 태양광으로부터 파장 또는 영역 중 일부를 선택적으로 흡수하여 열로 전환하는 열전환 영역이 구비된 외벽(11)과 상기 외벽(11)에 의해 한정되는 내부공간으로서 미세조류를 수용할 수 있는 배양공간인 반응실(1)로 입체적으로 형성된다. 배양용기(10-1)은 그 재질이 플렉서블(flexible)한 유리, 플라스틱 및 반투과막일 경우 그 내부 또는 외부에 배치되어 배양용기(10-1)의 입체적 형상을 유지하는 형상유지 틀(20)을 더 포함하는 것이 가능하며, 배양공간을 안정적으로 유지할 수 있도록 한다. 특히, 배양용기(10-1)의 재질이 특정 파장 필터기능이 있는 반투과막의 경우 미세조류가 성장하면서 배출하는 배설물과 성장을 방해하는 대사 산물이 해수에 녹아서 배출되는 해수와 함께 자연스럽게 제거됨에 따라, 배설물과 성장을 방해하는 대사 산물을 제거하기 위한 별도의 정화작업을 필요로 않으며, 배지의 교환 또한 필요로 하지 않는다. 나아가, 해수에 녹아있는 이산화탄소 역시 미세조류의 성장과정에서 일어나는 광합성에 사용되며, 광합성의 산물로 발생하는 산소는 반투과막을 통과하여 대기 중으로 배출될 수 있다. 상기 배양용기(10-1)의 형태는 배양하고자 하는 미세조류의 특성과 배양 규모에 따라 자유로운 변형이 가능하다.
상기 배양용기(10-1)가 유리, 플라스틱, 해수의 출입이 가능한 가운데 미세조류의 투과가 차단되는 반투과막 등의 광투과성이 있는 다양한 재질의 전부 또는 일부에 특정 파장이나 영역을 투과 혹은 차단하는 광필터 영역 및/또는 특정 파장이나 영역의 빛을 흡수하여 열로 전환하는 열전환 영역을 구비한 미세조류 배양기라는 것이 본 발명의 가장 주요한 특징이라 할 수 있다. 상기 광필터 영역 또는 열전환 영역은 외벽(11) 전체에 걸쳐 구비될 수 있고, 외벽의 일부를 구성할 수도 있는데, 이들 광필터 영역 또는 열전환 영역은 외벽(11)에 코팅 또는 도색함으로써 형성될 수 있고, 또는 외벽(11)의 소재 제조시 안료를 혼합함으로써 제조될 수 있다. 이렇게 제작된 배양용기(10-1)는 미세조류에 특정 파장만 공급하거나 차단함으로써, 미세조류의 균체 생산을 향상시키는 것이 가능하며, 광 파장에 따라 대사산물의 생산량을 증가시키는 것이 가능하다. 투과 또는 차단하고자 하는 광파장이나 영역의 경우 배양하고자 하는 미세조류의 광파장에 따른 광에너지 효율성에 따라 적색, 청색, 녹색 등의 파장이나 영역을 투과시켜 공급하는 것이 가능하다. 열전환 영역은 광열전환물질을 포함함으로써 광합성에 사용되지 않는 빛을 열로 전환시켜, 미세조류의 배양효율 및 광합성 효율을 향상시키는데 사용될 수 있다. 특히, 열전환 영역은 배양액의 온도 하강의 폭을 낮춤으로써, 동절기에도 미세조류 배양이 가능하게 할 수 있다. 한편, 물의 증발에 따른 물방울 맺힘을 방지하기 위해, 배양용기의 상부는 추가적으로 발수코팅될 수 있다.
상기 부양수단(30)은 배양용기(10-1)를 태양광에 노출될 수 있도록 수면 근처에 위치시키기 위한 것으로서, 도 1에 도시한 바와 같이, 서로 떨어져 배치되는 한 쌍의 부양 부재(35) 및 상기 한 쌍의 부양 부재(35)를 소정의 간격을 유지하는 상태로 연결하는 연결프레임(37)으로 구성될 수 있다. 다만, 부양수단(30)은 상기와 같은 형태에 국한되지 않으며, 배양용기(10-1)의 형상과 크기에 따라 다양한 변형이 가능하다 할 것이다.
선택적으로, 본 발명의 다른 실시예에 따르면, 상기 배양용기는 부양수단(30) 대신 결합수단(미도시)을 통해 해상에 설치되어 있는 수상구조물(미도시), 수저구조물 또는 수저면에 연결될 수 있다. 상기 결합수단으로는 밧줄, 쇄사슬, 강선 등 다양한 소재가 사용될 수 있다. 상기 수상구조물은 양식장 설비, 부표, 등부표, 수중플랜트, 부유식 소파제, 바지선 또는 메가플로트일 수 있고, 상기 수중플랜트는 풍력발전장치, 조류발전장치, 파력발전장치, 해양헬리포트 또는 석유시추선일 수 있다. 한편, 상기 수저구조물은 각종 케이블, 가스관, 송유관을 포함한다.
도 5 내지 도 8은 본 발명의 제2실시예에 따른 광생물 반응기를 개략적으로 도시한 예시도이다. 본 발명의 제2실시예에 따른 광생물 반응기는, 도 2에 도시한 바와 같이, 제1실시예와 마찬가지로 배양용기(10-2) 및 부양수단(30)을 포함하되, 배양용기(10-2)와 부양수단(30)은 길이조절이 가능한 하나 이상의 로프(25)로 연결된다.
배양용기(10-2)는 태양광의 범위 내에서 한 영역의 파장대 만을 투과 또는 차단하도록 제작될 수 있고, 나아가 도 6 내지 도 8에 도시된 바와 같이 배양용기(10-2)는 태양광의 범위 내에서 두 영역 이상의 파장대가 투과하도록 배양용기(10-2)의 광필터 영역(13)을 수평 또는 수직적으로 순차 배열하거나 특정 파장 투과부분을 혼합, 또는 격자 모양으로 교차배열하여 미세조류가 받는 특정 파장의 비율 조절이 가능하도록 제작될 수 있다. 선택적으로 상기 광필터 영역(13)의 전부 또는 일부는 특정 파장대의 태양광을 흡수하여 열로 전환하는 열전환 영역(13)으로 대체될 수 있다. 한편, 물방울 맺힘현상을 방지하기 위해, 상기 배양용기의 상부의 일부 또는 전부는 발수코팅될 수 있다.
배양용기(10-2)는 플렉서블(flexible)한 유리, 플라스틱, 반투과막 또는 광투과성 재질등으로 제작할 경우, 배양용기(10-2)의 내부 또는 외부에 배치되어 배양용기(10-2)의 입체적 형상을 유지하는 형상유지 틀이 추가적으로 포함될 수 있다.
나아가 상기 제2실시예에 따른 광생물 반응기는, 부양수단(30)에 매달리도록 연결된 상태에서 수저면에 고정되어 이동범위를 제한하는 고정수단(70)을 더 포함할 수 있다. 이와 같은 고정수단(70)은 광생물 반응기가 해수 및 담수 등 물의 이동에 따라 이동하는 것을 방지하여 관리가능한 제한적인 영역을 벗어나지 않도록 하기 위한 것으로서, 비중이 높은 재질로 만들어지는 것이 바람직하며, 닻(anchor)과 유사하게 수저면에 쉽게 고정될 수 있는 형상으로 형성되는 것이 바람직하나 이에 한정되지 않는다.
선택적으로, 본 발명의 다른 실시예에 따르면, 상기 배양용기는 부양수단(30) 대신 결합수단(미도시)을 통해 해상에 설치되어 있는 수상구조물(미도시), 수저구조물 또는 수저면에 연결될 수 있다. 상기 결합수단으로는 밧줄, 쇄사슬, 강선 등 다양한 소재가 사용될 수 있다. 상기 수상구조물은 양식장 설비, 부표, 등부표, 수중플랜트, 부유식 소파제, 바지선 또는 메가플로트일 수 있고, 상기 수중플랜트는 풍력발전장치, 조류발전장치, 파력발전장치, 해양헬리포트 또는 석유시추선일 수 있다. 한편, 상기 수저구조물은 각종 케이블, 가스관, 송유관을 포함한다.
도 9 내지 도 11은 본 발명의 제3실시예에 따른 광생물 반응기를 개략적으로 도시한 예시도이다. 본 발명의 제3실시예에 따른 광생물 반응기는, 도 9에 도시한 바와 같이, 원통형으로 형성되는 배양용기(10-3)와 부양수단(30)을 포함한다. 또한, 제2실시예와 마찬가지로,배양용기(10-3)와 부양수단(30)은 길이조절이 가능한 하나 이상의 로프(25)로 연결되며, 배양용기(10-3)의 하부에 매달리는 무게추(60)를 포함한다.
상기 제3실시예에 따른 광생물 반응기는 배양용기(10-3)의 하부에 연결되는 기체공급관(40), 및 기체공급관(40)을 통해 외부공기를 배양용기(10-3)에 공급하는 기체공급수단(50)을 추가적으로 포함할 수 있다. 따라서 기체공급시 배양용기(10-3) 내부의 배양공간은 기포에 의한 혼합작용으로 배양용기(10-3) 내에서 미세조류가 고르게 분산될 수 있도록 하여, 미세조류의 배양환경이 양호하게 유지될 수 있도록 한다. 물론, 해류나 조석간만의 차 등으로 인한 해수의 유동에 의해 배양용기(10-3)는 자연적으로도 양호한 혼합효과를 얻을 수 있는 경우가 많다. 따라서 상기와 같은 기체공급은 필요에 따라 더욱 바람직한 혼합작용이 요구될 경우에 선택적으로 채택되는 것이 바람직하다.
배양용기(10-3)는 태양광의 범위 내에서 한 영역의 파장대 만을 투과 또는 차단하도록 제작될 수 있고, 나아가 도 10 및 도 11에서 도시된 바와 같이, 배양용기(10-3)는 태양광의 범위 내에서 두 영역 이상의 파장대가 투과하도록 배양용기(10-3)의 광필터 영역(13)을 수평 또는 수직적으로 순차 배열하거나 특정 파장 투과부분을 혼합, 또는 격자 모양으로 교차배열하여 미세조류가 받는 특정 파장의 비율 조절이 가능하도록 제작될 수 있다. 선택적으로 상기 광필터 영역(13)의 전부 또는 일부는 특정 파장대의 태양광을 흡수하여 열로 전환하는 열전환 영역(13)으로 대체될 수 있다. 한편, 물방물 맺힘 현상을 방지하기 위해 상기 배양용기의 상부의 전부 또는 일부는 발수코팅될 수 있다.
배양용기(10-3)는 플렉서블(flexible)한 유리, 플라스틱, 반투과막 또는 광투과성 재질등으로 제작할 경우, 배양용기(10-3)의 내부 또는 외부에 배치되어 배양용기(10-3)의 입체적 형상을 유지하는 형상유지 틀(20)이 추가적으로 포함될 수 있다.
나아가 상기 제3실시예에 따른 광생물 반응기에서, 기체공급관(40)과 무게추(60)는 모두 원통형으로 형성되는 배양용기(10-3)의 꼭지점에 연결되며, 제2실시예와 달리, 고정수단(70)은 배양용기(10-3)의 꼭지점에 매달리도록 연결된 상태에서 수저면에 고정되어 이동범위를 제한한다.
선택적으로, 본 발명의 다른 실시예에 따르면, 상기 배양용기는 부양수단(30) 대신 결합수단(미도시)을 통해 해상에 설치되어 있는 수상구조물(미도시), 수저구조물 또는 수저면에 연결될 수 있다. 상기 결합수단으로는 밧줄, 쇄사슬, 강선 등 다양한 소재가 사용될 수 있다. 상기 수상구조물은 양식장 설비, 부표, 등부표, 수중플랜트, 부유식 소파제, 바지선 또는 메가플로트일 수 있고, 상기 수중플랜트는 풍력발전장치, 조류발전장치, 파력발전장치, 해양헬리포트 또는 석유시추선일 수 있다. 한편, 상기 수저구조물은 각종 케이블, 가스관, 송유관을 포함한다.
도 12는 본 발명의 제4실시예에 따른 광생물 반응기를 개략적으로 도시한 예시도이다. 본 발명의 제4실시예에 따른 광생물 반응기는, 도 12에 도시한 바와 같이, 원통형으로 형성되며 수면과 나란하게 뉘어진 형태로 배치되며, 상하로 서로 나란하게 배열되는 특정 파장의 필터 기능이 있는 3개의 배양용기(10-4)를 포함한다. 배양용기(10-4)의 수는 제한되지 않지만, 배양용기(10-4)가 너무 깊은 곳에 위치할 경우 미세조류의 광합성에 필요한 태양광이 도달할 수 없다는 것을 고려하여, 적절한 깊이 이내에 위치하도록 제한될 필요가 있다.
구체적으로, 배양용기(10-4)들 중 최하부에 위치하는 배양용기(10-4c)를 포함하는 하나 이상의 배양용기(10-4)에 매달리는 하나 이상의 무게추(60)를 포함한다. 도 12에는 최하부에 위치하는 배양용기(10-4c)와 중간에 위치하는 배양용기(10-4b)에만 무게추(60)가 매달리는 형태의 광생물 반응기가 도시되고 있지만, 최하부에 위치하는 배양용기(10-4c)에만 또는 모든 배양용기(10-4a, b, c)에 무게추(60)가 매달리는 형태 또한 가능하다 할 것이다. 즉, 최하부에 위치하는 배양용기(10-4c)에는 전체적인 배열형태 및 균형유지를 위해 무게추(60)가 필수적으로 매달리도록 구성해야 하지만, 나머지 배양용기(10-4a, b)에는 선택적으로 채택될 수 있다는 것이다. 도 12에는 예시적으로 배양용기가 세 개만 도시되어 있으나, 배양용기의 수는 이 보다 더 늘어날 수 있다. 한편, 물방물 맺힘 현상을 방지하기 위해 상기 배양용기의 상부의 전부 또는 일부는 발수코팅될 수 있다.
선택적으로, 본 발명의 다른 실시예에 따르면, 상기 배양용기는 부양수단(30) 대신 결합수단(미도시)을 통해 해상에 설치되어 있는 수상구조물(미도시), 수저구조물 또는 수저면에 연결될 수 있다. 상기 결합수단으로는 밧줄, 쇄사슬, 강선 등 다양한 소재가 사용될 수 있다. 상기 수상구조물은 양식장 설비, 부표, 등부표, 수중플랜트, 부유식 소파제, 바지선 또는 메가플로트일 수 있고, 상기 수중플랜트는 풍력발전장치, 조류발전장치, 파력발전장치, 해양헬리포트 또는 석유시추선일 수 있다. 한편, 상기 수저구조물은 각종 케이블, 가스관, 송유관을 포함한다.
도 13은 본 발명의 제5실시예에 따른 광생물 반응기를 개략적으로 도시한 예시도이다. 본 발명의 제5실시예에 따른 광생물 반응기는, 도 13 도시한 바와 같이, 길쭉한 원통형으로 형성되어 수면과 나란하게 뉘어진 형태로 부양수단(30)에 연결되는 배양용기(10-5)를 포함한다. 이 경우, 배양용기(10-5)는 파도나 해수의 이동에 의해 더욱 자유롭게 뒤집힐 수 있는 상태가 된다 할 수 있을 것이다. 한편, 물방물 맺힘 현상을 방지하기 위해 상기 배양용기의 상부의 전부 또는 일부는 발수코팅될 수 있다.
선택적으로, 본 발명의 다른 실시예에 따르면, 상기 배양용기는 부양수단(30) 대신 결합수단(미도시)을 통해 해상에 설치되어 있는 수상구조물(미도시), 수저구조물 또는 수저면에 연결될 수 있다. 상기 결합수단으로는 밧줄, 쇄사슬, 강선 등 다양한 소재가 사용될 수 있다. 상기 수상구조물은 양식장 설비, 부표, 등부표, 수중플랜트, 부유식 소파제, 바지선 또는 메가플로트일 수 있고, 상기 수중플랜트는 풍력발전장치, 조류발전장치, 파력발전장치, 해양헬리포트 또는 석유시추선일 수 있다. 한편, 상기 수저구조물은 각종 케이블, 가스관, 송유관을 포함한다.
도 14는 본 발명의 제6실시예에 따른 광생물 반응기를 개략적으로 도시한 예시도이다. 본 발명의 제6실시예에 따른 광생물 반응기는, 도 14에 도시한 바와 같이, 중앙의 원통형 부분(17)과 이 원통형 부분의 양단에 한 쌍의 원추형 부분(19)을 갖도록 형성되며, 각 원추형 부분(19)의 꼭지점에 연결되는 로프(25)를 통해 부양수단(30')에 연결되는 배양용기(10-6)를 포함한다. 배양용기(10-8)는, 상기 제5실시예에 따른 배양용기(10-5)의 경우와 비교해서도, 파도나 해수의 이동에 의해 더욱 자유롭게 뒤집힐 수 있는 상태가 된다 할 수 있을 것이다. 한편, 물방물 맺힘 현상을 방지하기 위해 상기 배양용기의 상부의 전부 또는 일부는 발수코팅될 수 있다.
상기 제6실시예에 따른 광생물 반응기는, 도 14에 도시한 바와 같이, 부양수단(30')의 길이방향 규모확대와 더불어, 부양수단(30')에 다수 쌍의 연결고리(39)를 구비하도록 하고, 쌍을 이루는 연결고리(39)에 각각 배양용기(10-6)를 연결하는 방식으로 용이하게 규모확대가 가능함을 보여주고 있다. 별도로 도시하지는 않았지만, 부양 수단(30')의 폭방향 규모확대 또한 가능하며, 따라서 상업적인 대량배양을 위한 규모확대가 가능함을 예상할 수 있을 것이다.
도 15 내지 17은 본 발명의 제7실시예에 따른 광생물 반응기의 배양용기를 개략적으로 도시한 예시도이다.
도 15에는 원통형을 가지는 배양용기(10-7)가 도시되어 있다. 도 15을 참조하면, 본 발명의 일실시예를 따르는 배양용기(10-7)는 소정의 두께를 가지는 막으로 형성된 외벽(11)과 외벽(11)에 의해 한정되는 내부공간으로서 미세조류를 수용할 수 있는 반응실(1)로 구성된다. 이때 외벽의 일면에는 배양용기(10-7)로 투입되는 광파장을 선택적으로 통과시키거나 차단할 수 있는 광필터 영역(13)이 포함되는데, 도 15 및 도 16에 도시된 바와 같이 광필터 영역(13)은 소정의 형상을 가진 패턴 형태인 광필터 패턴(13a)으로 형성될 수 있다. 한편, 물방물 맺힘 현상을 방지하기 위해 상기 배양용기의 상부의 전부 또는 일부는 발수코팅될 수 있다.
배양용기(10-7)의 외벽은 일부 또는 전부에 반투과막을 포함할 수 있다. 반투과막은 외부의 대기와는 산소, 질소 또는 이산화탄소 등의 유출입을 가능하게 하며, 해수와는 물, 영양염류 등의 유출입이 가능하게 하나 미세조류의 유출입은 차단시키는 기능을 한다.
따라서 이러한 반투과막으로 이루어진 배양용기 내에 수용된 미세조류는 해수상에 부유할 경우, 외부 환경으로부터 격리된 상태에서 배양에 필요한 물질을 외부 환경으로부터 자연스럽게 공급받을 수 있게 된다.
한편, 외벽(11)은 기본적으로 광투과성을 가지고 있다. 따라서 광원, 일예로서 태양에 노출될 경우, 태양으로부터의 태양광은 외벽(11)을 투과하여 반응실(1)에 수용된 미세조류에 공급되게 된다.
이때 외벽(11)은 광원으로부터의 투입되는 광에너지의 일부를 감소시킬 수 있는 광필터 패턴(13a)을 포함한다. 본 발명의 제7실시예에 따른 광생물 반응기는 외벽(11)에 형성된 광필터 패턴(13a)의 형상 또는 밀도를 이용하여 투입되는 광에너지를 조절할 수 있다. 예를 들어, 투입되는 광에너지가 많은 경우에는 광필터 패턴(13a)의 패턴 형상을 크게 하거나 밀도를 높여 광필터 패턴(13a)에 의해 감소되는 광에너지를 높게 할 수 있고, 투입되는 광에너지가 적을 경우에는 이와 반대로 할 수 있다.
미세조류에 따라서는 배양에 필요한 광에너지가 서로 상이한 범위를 가지거나 또는 하나의 미세조류에 있어서도 배양의 과정에서 단계별로 필요한 광에너지가 서로 다른 경우가 있다. 일예로서 해마토코커스(Haematococcus)에서 아스타잔틴(astaxanthin)의 유도 생산 공정은 2 단계로 진행될 수 있다. 즉 배양의 제1단계에서는 상대적으로 낮은 광에너지를 공급하여 균체를 생산을 충분히 이룬 후에 제2단계에서 고광도의 광에너지로 아스타잔틴(astaxanthin)을 유도 하게 된다.
본 발명의 제7실시예에 따르는 광생물 반응기의 경우에는 광원에 노출되는 외벽(11) 상의 광필터 패턴(13a)을 적절하게 선택함으로써 미세조류의 배양에 필요한 최적의 광에너지 조건을 구현할 수 있다.
예를 들어, 태양광에너지가 높은 시간대나 계절에는 광차단율이 높은 광차단 패턴을 이용하여 반응실로 공급되는 태양에너지를 적절하게 감소시켜 광저해 현상을 막고 세포에 적절한 광에너지를 공급하는 것이 가능하다.
한편, 반대로 태양광에너지의 공급이 상대적으로 낮은 시간대나 계절에는 광차단율이 낮은 광차단패턴을 이용하여 미세조류 생장에 적절한 광에너지 공급을 통한 미세조류의 효율적 배양이 가능하다.
특히 본 발명의 제7실시예에 따르는 광생물 배양기를 바다에 부유시켜 태양광에 노출시킬 경우, 태양광의 일사량에 대응하여 선택적으로 반응실(1)로 투입되는 태양광의 광량 또는 광에너지를 조절할 수 있다.
광필터 패턴(13a)은 도 15에 도시된 바와 같이 스트라이프 형태가 평행하게 이격되어 배열된 형태이거나 도 16에 도시된 바와 같이 격자배열 형태일 수 있다. 이때 스트라이프의 폭이나 개수를 적절하게 조절함으로써 광필터 패턴(13a)에 의해 차단되는 광에너지를 조절할 수 있다.
도 15 및 도 16에 도시된 형태는 예시적인 것이며, 본 발명에 따른 광차단 패턴은 상술한 목적에 부합하는 것이면 어떠한 형태도 가능하다. 도시하지 않았으나, 원형, 다각형, 나선형, 지그재그 등 다양한 형상이 가능하다.
본 발명의 다른 실시예로서 광생물 반응기의 외벽의 일부 또는 전부에는 광원으로부터의 광파장을 흡수하여 이를 열로 전환하는 기능을 수행하는 영역(이하 열전환 영역)이 형성될 수 있다.
이러한 구성을 가진 배양용기(10-7)을 해수 또는 담수에 부유시키는 경우, 온도가 낮은 시간대 또는 계절에는 광원으로부터 입사되는 광파장의 일부 영역을 흡수하여 이를 열로 전환함으로써 배양용기(10-7)의 내부온도를 상승시켜 광합성 효율을 향상시킬 수 있다. 따라서 온도의 감소로 인하여 미세조류의 광합성의 효율이 감소되는 것을 일정 부분 방지할 수 있다.
본 실시예의 열전환 영역은 도 17과 같이 외벽의 일면 전부를 형성하거나, 상술한 광필터 패턴과 마찬가지로 다양한 패턴의 형태로 형성할 수 있다.
열전환 영역이 일정한 형상으로 이루어진 열전환 패턴일 경우에는 본 발명의 제7실시예에 따른 배양용기는 외벽(11)에 형성된 열전환 패턴(13a)의 형상 또는 밀도를 이용하여 흡수되는 광에너지를 조절할 수 있다. 예를 들어, 흡수되는 광에너지를 크게 하기 위해서는 열전환 패턴(13a)의 패턴 형상을 크게 하거나 밀도를 높여 열전환 영역(13)에 의해 열로 전환되는 광에너지의 양을 증가시킬 수 있다.
이러한 열전환 패턴은 광필터 패턴과 혼용되어 사용될 수 있다. 즉, 외벽의 일부에는 광필터 영역이 적용되고, 나머지 부분은 열전환 패턴을 사용할 수도 있다.
상술한 광필터 패턴 및/또는 열전환 패턴은 모두 외벽을 구성하는 광투과성막 자체의 해당영역의 재질을 광필터 특성 또는 열전환 특성을 가진 재질로 구성할 수 있다. 상기 광필터 특성을 가진 재질은 크롬산납(PbCrO4), 황색산화철(FeO(OH) 또는 Fe2O3·H2O), 카드뮴옐로(CdS 또는 CdS+ZnS), 티타늄옐로(TiO2·NiO·Sb2O3), 크롬오렌지(PbCrO4·PbO), 몰리브데늄오렌지(PbCrO4·PbMoO4·PbSO4), 적색산화철(Fe2O3), 광명단(Pb3O4), 카드뮴레드(CdS+CdSe), 망간바이올렛(NH4MnP2O7), 감청(Fe(NH4)Fe(CN)6·xH2O), 군청(Na6~8Al6Si6O24S2~4), 코발트블루(CoO·Al2O3), 크롬그린(크롬산납 + 감청), 에메랄드 그린(Cu(CH3CO2)2Cu(AsO2)2) 및 이들의 혼합물로 이루어지는 군에서 선택되어지는 어느 하나 이상의 안료로 도색 또는 코팅하거나 상기 안료를 외벽을 구성하는 소재의 제조시 혼합하여 제조할 수 있다. 선택적으로 상기 안료로는 중금속계가 아닌 천연 색소가 사용될 수 있는데, 상기 천연색소에는 치자황색소, 쪽 청색소, 닥 청색소, 홍화 적색소, 오미자 적색소, 오배자 황색소, 쑥 녹색소, 아스타잔틴, 안토시아닌, 피코에리드린, 잔토필, 푸코잔틴, 피코시아닌라스베라톨, 카로티노이드, 벤조퀴논, 시코닌, 알리자닌, 안트라퀴논, 나프토퀴논, 코리신, 플라빈, 이소플라빈 또는 이들 중 둘 이상의 혼합색소가 사용될 수 있다. 한편, 상기 열전환 특성을 가진 재질은 적외선, 근적외선, 가시광선 또는 자외선을 흡수할 수 있는 물질로서, 유기 또는 무기의 안료나 염료, 유기색소, 금속, 금속산화물, 금속탄화물 또는 금속붕화물일 수 있고, 카본블랙 등의 흑색안료, 프탈로시아닌, 나프탈로시아닌 등의 가시로부터 근적외영역에 흡수를 갖는 대환상 화합물의 안료, 유기염료(인돌레닌 염료 등의 시아닌 염료, 안트라퀴논계 염료, 아즈렌계 색소, 프탈로시아닌계 염료), 및 디티올니켈 착체 등의 유기금속 화합물 색소를 포함할 수 있다.
선택적으로, 상기 광필터 영역 또는 열전환 영역은 배양용기의 외벽의 전부 또는 일부에 별도로 광필터 패턴막 또는 열전환 패턴막을 부착시킴으로서 구현할 수 있다. 이때 광필터 패턴막 또는 열전환 패턴막은 외벽(11)에 접착 및 탈착이 가능한 테이프일 수 있다.
한편, 해수 또는 담수에서 부양되며 미세조류를 배양하는 광생물 반응기에 있어서는 태양이 가장 중요한 광원이다. 이때 미세조류의 효율적 배양을 위해서는 태양의 위치에 따른 광도를 고려하여 미세조류 생산 방법에 효과적으로 적용할 필요가 있다. 지구의 공전에 따라 계절이 변하게 되며, 결론적으로 태양광에너지가 지표면에 도달하는 정도가 달라진다. 또한 지구의 자전에 따라 밤과 낮이 존재하며, 낮 시간에도 지구의 자전 주기에 따라 태양광에너지의 도달 정도가 달라진다.
태양에서 발생하는 광에너지를 이용하여 미세조류는 일정 광도 이상의 광에너지를 받을 시에는 광합성 기구가 파괴되어 더 이상 광합성이 불가능 하거나, 높은 광에너지를 이기고자 2차 대사산물을 축적하게 되어 미세조류 배양 목적이 균체 생산일 경우 원하지 않는 산물을 생산하게 될 수도 있다.
따라서 투입되는 광에너지를 배양되는 미세조류의 특성에 맞게 조절할 필요가 있다.
또한 태양광을 흡수하여 열로 전환하는 경우에도, 계절이나 시간대에 따라 다른 특성을 가질 수 있다. 즉, 태양의 노출시간이 길고 평균온도가 높은 여름에 비해 태양의 노출시간이 작고 평균온도가 낮은 겨울에 열전환율을 더욱 높일 필요가 있다.
본 발명에 의하면 시기별로 나누어 산출된 평균 일조량에 대응하여 광차단 패턴 또는 열전환 패턴의 형상 또는 밀도를 설계한 후 이를 활용함으로써 상술한 문제점을 해결할 수 있다.
특히 광필터 패턴막 또는 열전환 패턴막이 상술한 테이프일 경우에는 접착 및 탈착이 용이하므로 이러한 성질을 이용하여 시기별로 광생물 반응기로 투입되는 태양광의 광에너지 또는 태양광으로부터의 열전환율을 조절할 수 있다.
도 18에는 일예로서 테이프 형태의 광차단 패턴막을 이용하여 시기별로 광생물 반응기로 투입되는 태양의 광에너지를 조절하는 방법이 도시되어 있다.
도 18을 참조하면, 광생물 반응기를 부유시켜 태양광에 노출시키는 총 기간을 일정한 기간으로 나눈 후, 각 기간별 평균 일조량, 즉 투입되는 광에너지를 산출한다(S1).
이렇게 산출된 광에너지에 대응하여 광차단 패턴의 형상 또는 밀도를 설계한 후 이렇게 설계된 광차단 패턴막을 준비한다(S2). 따라서 광차단 패턴막을 시기별로 복수개로 준비되게 된다. 예를 들어, 일조량이 지나치게 높은 시기에는 차단막 패턴의 형상 또는 밀도를 증가시켜 이에 의해 감소되는 광에너지를 높인다. 반대로 일조량이 낮은 시기에는 이러한 패턴의 형상 또는 밀도를 감소시켜 투입되는 광에너지를 그 만큼 증가시킨다.
다음 해당 시기에 맞춰 준비된 광차단 패턴막을 광생물 반응기 중 태양광이 투입되는 일면에 부착시킨다(S3).
이때 시기별로 준비된 광필터 패턴막은 부착 및 탈착이 가능하므로, 일정 시기가 끝나 다음 시기가 도래하게 되면 종래에 광생물 반응기에 부착되어 있던 광필터 패턴막을 탈착시켜 제거하고 대신 도래한 시기에 맞는 새로운 광필터 패턴막을 다시 부착시키게 된다.
본 발명은 광필터 패턴을 이용하여 광생물 반응기로 투입되는 광에너지를 시기별로 적절하게 조절함으로써 적절한 광에너지가 미세조류에 공급되게 할 수 있다. 특히 바다에 부유시켜 태양광을 이용하여 배양하는 광생물 반응기의 경우에는 시기별로 일정하지 않은 일조량에 대응되는 광차단 패턴을 시기별로 이용하여 배양효율을 높임으로써 경제적인 미세조류의 대량배양을 가능하게 한다.
이러한 방법은 테이프 형태의 열전환 패턴막에 대해서도 동일하게 적용될 수 있다.
본 발명에 따른 광생물 반응기의 배양용기는 일정한 두께를 가지는 외벽과 상기 외벽에 의해 한정되며 미세조류와 배지가 수용되는 내부공간을 가지는 반응실로 이루지며, 상기 외벽은 서로 다른 광학적 특성을 가지는 복수의 막을 포함할 수 있다. 예를 들어, 상기 외벽은 서로 광투과율(또는 광차단율), 파장영역에 따른 광투과 특성(광필터 특성), 반사율이 상이한 복수의 막을 포함할 수 있다. 아울러, 상기 외벽은 물질에 따른 투과율이 상이한 복수의 막을 추가적으로 포함할 수 있다.
도 19에는 본 발명의 제8실시예를 따르는 평판형 배양용기(10-8)의 사시도가 나타나 있다. 도 19를 참조하면, 평판형 배양용기(10-8)는 직사면체의 형태를 가진다. 이때 외벽(11)은 서로 다른 광학적 특성을을 가지고 상하로 이격배치되는 서로 다른 막을 포함한다. 제8실시예로서 상대적으로 광투과율이 낮은 제1막(2)이 직사면체의 상부막을 이루며 제1막(2)에 비해 광투과율이 높은 제2막(3)이 하부막을 구성할 수 있다. 이때 제1막(2) 및 제2막(3)을 포함하는 외벽에 의해 한정된 내부공간이 미세조류(7) 및 배지가 수용되는 반응실(1)이 된다.
이때 배양용기(10-8)가 도 19와 같이 해수 또는 담수에 부유하는 경우, 하부막을 수면과 접하거나 또는 수면 아래 일정 깊이로 잠기는 영역이며, 상부막은 대기와 접하며 광원에 1차적으로 노출되는 영역이 된다.
도 19에서는 제1막(2)이 상부막을 이루고 제2막(3)이 하부막을 이루는 것으로 도시되어 있으나, 이에 한정되는 것이 아니며 배양용기(10-8)가 뒤집어 지게 되면 제1막(2)은 하부막을, 제 2 막(3)은 상부막을 이룰 수도 있다. 한편, 물방물 맺힘 현상을 방지하기 위해 상기 배양용기의 상부의 전부 또는 일부는 발수코팅될 수 있다.
이때 배양용기(10-8)는 반응실(1) 내부로 가스를 공급할 수 있는 가스주입구(4) 및 가스 배출을 위한 가스 배출구(5)를 더 구비할 수 있다.
또한 미세조류의 배양 정도를 확인하기 위한 샘플을 채취할 수 있는 샘플링 포트(6)를 더 구비할 수 있다.
본 발명의 제8실시예를 따른 광생물 반응기의 배양용기(10-8)에 의하면, 광투과율이 서로 상이한 제1막(2) 및 제2막(3)을 이용하여 반응실(1)에 투입되는 광에너지를 시기별 또는 단계별로 조절할 수 있다. 특히 본 발명의 제8실시예에 따르는 광생물 배양기의 배양용기(1O-8)를 해수 또는 담수에 부유시켜 태양광에 노출시킬 경우, 태양광의 일사량에 대응하여 선택적으로 반응실(1)로 투입되는 태양광의 광량 또는 광도를 조절할 수 있다.
즉, 미세조류의 효율적 배양을 위해서는 태양의 위치에 따른 광도를 고려하여 미세조류 생산 방법에 효과적으로 적용할 필요가 있다. 지구의 공전에 따라 계절이 변하게 되며, 결론적으로 태양광에너지가 지표면에 도달하는 정도가 달라진다. 또한 지구의 자전에 따라 밤과 낮이 존재하며, 낮 시간에도 지구의 자전 주기에 따라 태양광에너지의 도달 정도가 달라진다.
태양에서 발생하는 광에너지를 이용하여 미세조류는 일정 광도 이상의 광에너지를 받을 시에는 광합성 기구가 파괴되어 더 이상 광합성이 불가능하거나, 높은 광에너지를 이기고자 2차 대사산물을 축적하게 되어 미세조류 배양 목적이 균체 생산일 경우 원하지 않는 산물을 생산하게 될 수도 있다.
또한 미세조류에 따라서는 배양에 필요한 광에너지가 서로 상이한 범위를 가지거나 또는 하나의 미세조류에 있어서도 배양의 과정에서 단계별로 필요한 광에너지가 서로 다른 경우가 있다. 일예로서 해마토코커스(Haematococcus)에서 아스타잔틴(astaxanthin)의 유도 생산 공정은 2 단계로 진행될 수 있다. 즉 배양의 제1단계에서는 상대적으로 낮은 광에너지를 공급하여 균체를 생산을 충분히 이룬 후에 제2단계에서 고광도의 광에너지로 아스타잔틴(astaxanthin)을 유도 하게 된다.
본 발명의 제8실시예를 따르는 광생물 반응기의 배양용기(10-8)의 경우에는 바다 또는 호수에 부유시킬 때 태양광에 노출되는 면을 적절하게 선택함으로써 미세조류의 배양에 필요한 최적의 광도 조건을 구현할 수 있다.
예를 들어, 태양광의 광도가 높은 시간대나 계절에는 광투과율이 낮은 제1 막(2)을 태양광에 노출되도록 상부에 배치시킴으로 반응실(1)로 공급되는 태양에너지를 적절하게 감소시켜 광저해 현상을 막고 세포에 적절한 광에너지를 공급하는 것이 가능하다.
한편 반대로 태양광의 광도가 상대적으로 낮은 시간대나 계절에는 배양용기(10-8)를 뒤집어 상부막과 하부막의 위치변화를 통해 투과율이 높은 제2막(3)을 태양광에 노출시킴으로써 미세조류 생장에 적절한 광에너지 공급을 통한 미세조류의 효율적 배양이 가능하다.
이때 일예로서 이와 같이 서로 광투과율이 서로 다른 복수의 막은 각각은 막 자체가 서로 광투과율이 다른 재질로 이루어 질 수 있다. 또는 광투과성막 상에 서로 다른 광투과율을 가지는 재질, 예를 들어 광차단용 필름 또는 테이프를 부착시킴으로써 구성할 수 있다.
또 다른 예로서 광투과성막 상에 광투과율을 조절할 수 있는 다양한 형태의 광필터 패턴을 형성함으로써 광투과율이 다른 복수의 막을 구성할 수 있다.
도 20의 (a) 내지 (c)는 광투과율을 조절하기 위하여 광생물 반응기의 배양용기(10-8)의 일면에 형성할 수 있는 광필터 패턴(어두운 부분)의 형태를 예시한 것이다.
도 20의 (a)에는 태양광을 차단하는 패턴이 형성되지 않은 예이며, (c)는 태양광이 완전히 차단한 경우의 예이다. 또한 도 20의 (b)는 태양광을 일정비율, 예를 들어 30, 50, 70% 차단하도록 제작된 것이다.
상기 광필터 패턴은 그 자체가 광을 투과하지 않은 특성을 가지고 있거나 또는 광의 일부만을 투과시키는 특성을 가질 수 있다.
또한 상기 광필터 패턴은 막 재질 자체에 형성되거나 또는 광차단용 필름 또는 테이프를 광투과성막에 부착시켜 형성할 수 있다.
이상 태양광을 예를 들어 본 발명의 일실시예를 설명하였으나, 본 발명은 이에 한정되지 않고 태양광 이외의 광원, 예를 들어 LED 램프를 사용하는 경우에도 적용이 가능함은 자명하다 할 것이며, 이는 이하의 실시예에서도 마찬가지 이다.
한편, 미세조류를 배양함에 있어서 중요한 광인자 중의 하나인 광파장의 경우, 특정 파장영역의 광파장을 미세조류에 공급함으로써 균체의 농도와 미세조류로부터 생산되는 대사산물의 농도를 향상시키는 것이 가능하다.
미세조류는 광합성을 위한 엽록소 및 다양한 색소를 가지고 있다. 일반적으로 광합성에 사용되는 파장은 300 내지 700 nm 사이의 가시광선 영역이며, 녹조류에서는 주로 적색이나 청색영역의 광파장을 흡수하여 광합성에 사용하게 된다.
예를 들어, 녹조류의 한 종인 클로렐라(Chlorella)는 붉은색 발광다이오드(680nm)를 이용하여 붉은색 영역의 광파장에너지를 공급하였을 때, 혼합광이나 청색, 녹색 계열의 단파장의 광에너지를 공급한 것보다 성장성이 높았으며, 해마토코커스(Haematococcus)의 경우에는 어떠한 광파장이나 영역을 이용하여 배양함에 따라 생산하는 항산화력이 우수한 카로테노이드의 일종인 아스타잔틴(astaxanthin)의 생산농도가 달라진다(도 21 참조).
또한 미세조류가 자외선에 장시간 노출되는 경우에는 성장성이 저해된다고 알려져 있다.
따라서 미세조류의 성장성을 높이고 성장에 불필요한 파장을 제거하려면, 특정 파장영역만을 선택적으로 조사하는 것이 효율적일 수 있다.
예를 들어, 베타-카로틴(β-carotene), 루테인(lutein), 아스타잔틴(astaxanthin)과 같은 고가의 카로테노이드(carotenoid)를 미세조류로부터 생산할 때에 특정파장만을 공급하게 되면 그 생산성이 높아지는 결과를 얻을 수 있다.
이에 본 발명에 따르는 광생물 반응기의 제9실시예로서 외벽이 서로 다른 광필터 특성을 가지는 복수의 막으로 이루어진 광생물 반응기가 제공될 수 있다. 즉, 복수의 막간에는 광파장 내 투과될 수 있는 파장영역이 서로 다른 범위를 가질 수 있다.
이를 도 19를 참조하여 설명하면, 본 발명의 제9실시예에 따른 광생물 반응기는 배양용기(10-9)의 제1막(2) 및 제2막(3)이 각각 서로 다른 파장영역의 광파장을 투과시키도록 제조될 수 있다. 제8실시예의 경우 특정 파장과 관련 없이 투과되는 빛의 양을 조절하는 것이라면, 제9실시예의 경우에는 특정 영역의 파장대의 빛에 대한 투과를 차단하는 선택적 투과성을 갖는다는 점에서 상이하다. 한편, 물방물 맺힘 현상을 방지하기 위해 상기 배양용기의 상부의 전부 또는 일부는 발수코팅될 수 있다.
본 실시예를 따르는 광생물 반응기의 배양용기(10-9)를 도 21과 같이 바다에 부유시켜 광필터 기능을 가지는 제1막(2)을 광원, 일예로서 태양광에 노출시킬 경우, 제1막(2)으로 공급되는 태양광 중 일부 영역의 파장만이 선택적으로 투과 또는 차단할 수 있다. 따라서 반응실(1) 내에 수용된 미세조류에 특정영역대의 파장을 집중적으로 공급할 수 있게 된다.
또한 다른 영역의 파장을 미세조류에 공급할 필요가 있을 경우에는 배양용기(10-9)를 뒤집어 상하의 위치를 변경시켜 제2막(3)이 상부막으로서 광원에 노출시킴으로써 목적하는 효과를 얻을 수 있다.
이때 상술한 '파장영역'은 예를 들어 태양광파장 중의 청색계열, 적색계열, 또는 녹색계열 등으로 분류되는 것일 수 있다.
이때 투과 또는 차단되는 파장영역은 배양의 대상이 되는 미세조류의 종류에 따라 적절하게 선택될 수 있다.
이러한 광필터 기능을 가진 막은 플라스틱 또는 고분자 재질에 특정 파장영역의 광파장을 흡수할 수 있는 화학성분을 혼합하여 제조한 것일 수 있다. 이러한 화학성분은 색소안료에 포함될 수 있으며, 표 1에는 색소안료에 따른 사용가능한 화학성분이 표시되어 있다.
표 1
안료 종류 색상에 따른 화학성분
황색 안료 크롬산납(PbCrO4), 황색산화철(FeO(OH) 또는 Fe2O3·H2O), 카드뮴옐로(CdS 또는 CdS + ZnS), 티타늄옐로(TiO2·NiO·Sb2O3)
주황색 안료 크롬오렌지(PbCrO4·PbO), 몰리브데늄오렌지(PbCrO4·PbMoO4·PbSO4)
적색 안료 적색산화철(Fe2O3), 광명단(Pb3O4), 카드뮴레드(CdS + CdSe)
자색 안료 망간바이올렛(NH4MnP2O7)
청색 안료 감청(Fe(NH4)Fe(CN)6·xH2O), 군청(Na8-10Al6Si6O24S2-4), 코발트블루(CoO·Al2O3)
녹색 안료 크롬그린(크롬산납 + 감청), 에머랄드 그린(Cu(CH3CO2)2Cu(AsO2)2)
상기 천연색소에는 치자황색소, 쪽 청색소, 닥 청색소, 홍화 적색소, 오미자 적색소, 오배자 황색소, 쑥 녹색소, 아스타잔틴, 안토시아닌, 피코에리드린, 잔토필, 푸코잔틴, 피코시아닌라스베라톨, 카로티노이드, 벤조퀴논, 시코닌, 알리자닌, 안트라퀴논, 나프토퀴논, 코리신, 플라빈, 이소플라빈 또는 이들 중 둘 이상의 혼합색소가 사용될 수 있다.
선택적으로, 제1막(2)은 광투과막 상에 표 1에 예시된 것과 같은 안료를 포함하는 도료를 도포한 것이거나 또는 광필터용 필름 또는 테이프을 접착시킨 것일 수 있다. 이때 광필터 필름 또는 테이프는 특정파장 영역만을 투과 또는 차단하도록 설계된 광학필름 또는 테이프이다.
이때 본 실시예도 광투과성막 상에 도 20의 (a) 내지 (c)에 예시된 것과 같은 다양한 형태를 가지는 광필터 패턴을 형성함으로써 광필터 특성이 다른 복수의 막을 구성할 수 있다.
본 발명의 제10실시예에 따른 광생물 반응기의 배양용기(10-10)는 외벽이 광반사율이 서로 상이한 복수의 막으로 구성될 수 있다.
일예로서, 도 22에 도시된 것과 같이, 제1막(2)은 상부에 위치하고 제2막(3)은 하부에 위치하며, 제2막(3)은 제1막(2)을 투과한 광파장을 다시 반사하는 특성을 가질 수 있다.
이러한 제2막(3)에 의한 반사로 인해 제1막(2)을 투과한 광파장 중 반응실(1)에 수용된 미세조류에 공급되지 않고 제2막(3)까지 도달한 광파장을 다시 반응실(1)로 반사시켜 미세조류에 공급하게 된다. 따라서 제1막(2)을 투과한 광파장 중 최종적으로 미세조류(7)에 공급되는 공급율을 향상시킬 수 있게 된다.
이때 제2막(3)은 광투과성막의 일부 영역에 반사율이 높은 반사부재(8)을 적층시켜 제조한 것일 수 있다. 이때 상기 반사부재는 일면의 반사율이 높은 반사필름, 또는 반사 테이프 일 수 있다.
이때 반사부재(8)는 도달된 광파장을 난반사 시켜 반사되는 광파장을 내부공간(1) 내에 더 골고루 재공급할 수 있다. 이를 위해, 반사부재(1)의 표면에는 난반사를 위한 요철이 더 형성될 수 있다.
한편, 물방물 맺힘 현상을 방지하기 위해 상기 배양용기의 상부의 전부 또는 일부는 발수코팅될 수 있다.
본 발명의 제11실시예에 따른 광생물 반응기의 배양용기는 투과하는 물질을 서로 상이하게 선택할 수 있는 복수의 막으로 외벽을 구성할 수 있다.
예를 들어, 도 19의 배양용기(10-9) 중 대기와 접촉하는 제1막(2)은 외부의 대기와 산소 또는 이산화탄소 등의 유출입이 가능한 반투과막으로 형성하고, 해수 또는 담수와 접촉하거나 또는 해수 또는 담수에 일정 깊이가 잠기는 제2막(3)은 해수 또는 담수와는 물, 영양염류 등의 유출입이 가능하게 하나 미세조류의 유출입은 차단시키는 반투과막으로 형성할 수 있다.
따라서 이러한 반투과막으로 이루어진 배양용기(10-9) 내에 수용된 미세조류는 해수 또는 담수 상에 부유할 경우, 외부 환경으로부터 격리된 상태에서 배양에 필요한 물질을 외부 환경으로부터 자연스럽게 공급받을 수 있게 된다.
예를 들어, 부유시 수면 상부에 위치하는 제1막(2)은 대기 중 이산화탄소가 유입될 수 있으며, 이러한 이산화탄소는 반응실(1)에 수용된 미세조류의 광합성에 의해 제거될 수 있다. 또한 이러한 광합성에 의해 형성된 산소는 제1막(2)을 통해 대기로 배출되게 된다.
한편 해수 또는 담수와 접하는 제2막(3)을 통해서는 외부로부터 해수 또는 담수로의 영양염류 등의 유출입이 가능할 수 있다. 또한 미세조류의 성장과정에서 배출되는 배설물과 성장을 방해하는 대사산물이 해수 또는 담수에 녹아 상기 해수 또는 담수가 외부로 배출될 때 자연스럽게 제거될 수 있다. 따라서 별도의 정화작업이나 배지의 교환을 필요로 하지 않는다.
본 발명에 따른 광생물 반응기의 외벽은 광투과가 가능한 재질로 되어 있으며 유리, 플라스틱 또는 고분자 재질, 반투과막이 이용될 수 있다.
한편, 광생물 반응기의 형태는 여러 가지 형태로 제작할 수 있으며, 직육면체 평면판(flat plate), 원통형(cylinder) 반응기로 이루어진 군으로부터 선택될 수 있으나, 해양과 같이 확대가 용이한 넓은 공간상에서 무한하며 자연의 에너지인 태양광에너지를 미세조류 생장에 맞게 맞춤형으로 적용이 가능한 것이라면 어떠한 형상이라도 가능하다.
도 23 및 도 24에는 이러한 광생물 반응기의 배양용기의 형태로서 원통형과 타원형이 예시되어 있다.
한편, 이러한 광생물 반응기는 그 자체로 부양할 수 있으나, 경우에 따라 부유를 위한 부양수단과 부양되는 위치를 일정범위에서 고정할 수 있는 고정장치를 더 포함할 수 있다.
선택적으로, 본 발명의 다른 실시예에 따르면, 상기 배양용기는 부양수단(30) 대신 결합수단(미도시)을 통해 해상에 설치되어 있는 수상구조물(미도시), 수저구조물 또는 수저면에 연결될 수 있다. 상기 결합수단으로는 밧줄, 쇄사슬, 강선 등 다양한 소재가 사용될 수 있다. 상기 수상구조물은 양식장 설비, 부표, 등부표, 수중플랜트, 부유식 소파제, 바지선 또는 메가플로트일 수 있고, 상기 수중플랜트는 풍력발전장치, 조류발전장치, 파력발전장치, 해양헬리포트 또는 석유시추선일 수 있다. 한편, 상기 수저구조물은 각종 케이블, 가스관, 송유관을 포함한다.
한편 상술한 실시예는 태양광을 이용하는 것에 대한 것이었으나, 본 발명은 이에 한정하지 않고 일반 인위적인 광원, 일예로서 발광 다이오드를 이용하는 경우에도 동일한 방식으로 활용될 수 있음은 물론이다.
상기과 같은 본 발명에 따른 특정파장의 필터기능이 있는 미세조류 대량배양을 위한 광생물 반응기는, 다음과 같은 방식으로 미세조류 대량배양에 활용될 수 있을 것이다.
대량배양을 위해서는 상술한 모든 실시예의 광생물 반응기를 복수개로 연결하여 군집의 형태로 설치하는 것이 가능하다.
도 25 및 도 26은 이러한 군집형태의 예로서 평판형 광생물 반응기 및 원통형 광생물 반응기를 모아서 형성한 것이 예시되어 있다.
발명의 특정 실시예들에 대한 이상의 설명은 예시 및 설명을 목적으로 제공되었다. 따라서 본 발명은 상기 실시예들에 한정되지 않으며, 본 발명의 기술적 사상 내에서 해당 분야에서 통상의 지식을 가진 자에 의하여 상기 실시예들을 조합하여 실시하는 등 여러 가지 많은 수정 및 변경이 가능함은 명백하다.
부호의 설명
10, 10-1 내지 10-11: 배양용기
1 : 반응실 2: 제1막
3 : 제2막 4 : 가스 주입구
5 : 가스 배출구 6 : 샘플링 포트
7 : 미세조류 8 : 반사부재
6 : 샘플링 포트 11: 외벽
13 : 광필터 영역, 열전환 영역 13a: 광필터 패턴, 열전환 패턴
17 : 원통형 부분 19 : 원추형 부분
20: 형상유지 틀 25: 로프
30, 30': 부양 수단 35: 부양 부재
37: 연결 프레임 39: 연결고리
40: 기체공급관 50: 기체공급수단
60: 무게추 70: 고정수단
본 발명의 광생물 반응기는 바이오 에너지를 생산하기 위한 목적의 상업적인 미세조류 대량배양에 적합하며, 이 과정에서 지구온난화와 관련된 환경문제의 주범인 이산화탄소를 양적으로 의미를 갖는 정도로 제거함에 따라 친환경적이라 할 수 있다.
또한, 인공광원으로부터 나오는 특정 광파장을 사용하지 않고, 배양용기의 재질에 도색이나 코팅, 혹은 색소 혼합등을 통하여 무한한 자연광원인 태양광 중 특정 파장을 차단하거나 투과함으로써, 파장의 선택을 용이하게 한다. 이를 통해 미세조류로부터 생산되는 대사산물의 농도를 획기적으로 향상시키는 것이 가능하다.

Claims (35)

  1. 태양광으로부터 파장 또는 영역 중 일부를 선택적으로 투과 또는 차단할 수 있는 광필터 영역 및/또는 태양광으로부터 파장 또는 영역 중 일부를 선택적으로 흡수하여 열로 전환하는 열전환 영역이 구비된 외벽 및 상기 외벽에 의해 한정된 내부공간으로서 미세조류를 수용하도록 입체적으로 형성되는 반응실을 포함하는 배양용기; 및
    상기 배양용기가 미세조류의 생장에 적정한 태양광도에 노출되고 파도로부터 보호될 수 있도록, 수면 바로 밑 또는 적정한 깊이에 위치시키기 위해, 상기 배양용기에 연결되는 부양수단 또는 상기 배양용기를 수저면, 수저구조물 또는 수상구조물에 연결하기 위한 결합수단을 포함하는 미세조류 대량배양을 위한 광생물 반응기.
  2. 제1항에 있어서, 상기 외벽의 전부 또는 일부가 광투과성 소재로 이루어진, 광생물 반응기.
  3. 제2항에 있어서, 상기 광투과성 소재는 유리, 폴리염화비닐(PVC), 테레프탈레이트(PET), 아크릴, 폴리스티렌(PS), 고밀도폴리에틸렌(HDPE), 저밀도폴리에틸렌(LDPE), 폴리프로필렌(PP), 폴리카보네이트(PC), 폴리아마이드(PA) 또는 이들 중 어느 둘 이상의 적층구조인, 광생물 반응기.
  4. 제1항에 있어서, 상기 외벽의 전부 또는 일부가 반투과성막인, 광생물 반응기.
  5. 제4항에 있어서, 상기 반투과성막은 셀룰로오스 아세테이트(cellulose acetate), 셀룰로오스 트리아세테이트(cellulose triacetate), 셀룰로오스 아세테이트-셀룰로오스 트리아세테이트 복합물(cellulose acetate-cellulose triacetate blends), 니트로셀룰로오스(nitrocellulose), 젤라틴(gelatin), 폴리아민(polyamine), 폴리이미드(polyimide), 폴리(에테르 이미드){poly(ether imide)}, 방향성 폴리아마미드(aromatic polyamide), 폴리벤지미다졸(polybenzimidazole), 폴리벤지미다졸론(polybenzimidazolone), 폴리아크릴니트릴(polyacrylonitrile), 폴리아크릴니트릴-폴리염화비닐 공중합체{polyacrylonitrile-poly(vinyl chloride) copolymer}, 폴리설폰(polysulfone), 폴리에테르설폰(polyethersulfone), 폴리(디메틸페닐렌 옥사이드){poly(dimethylphenylene oxide)}, 폴리(비닐리덴 플루오라이드){poly(vinylidene fluoride)}, 다중전해질 복합체(polyelectrolyte complexes), 폴리올레핀(polyolefin), 폴리(메틸 메타크릴레이트){poly(methyl methacrylate)}, 폴리비닐알콜(polyvinyl alcohol) 및 이들의 공중합체로 구성된 군으로부터 선택되는 적어도 하나의 중합체를 포함하는, 광생물 반응기.
  6. 태양광으로부터 파장 또는 영역 중 일부를 선택적으로 투과 또는 차단할 수 있는 광필터 영역 및/또는 태양광으로부터 파장 또는 영역 중 일부를 선택적으로 흡수하여 열로 전환하는 열전환 영역이 구비되는 외벽 및 상기 외벽에 의해 한정된 내부공간으로서 미세조류를 수용하도록 입체적으로 형성되는 반응실을 포함하고 제1막 및 상기 제1막과 다른 위치에서 상기 외벽의 일부를 이루며 상기 제1막과 다른 특석을 가지는 제2막을 포함하는 배양용기; 및
    상기 배양용기가 미세조류의 생장에 적정한 태양광도에 노출되고 파도로부터 보호될 수 있도록, 수면 바로 밑 또는 적정한 깊이에 위치시키기 위해, 상기 배양용기에 연결되는 부양수단 또는 상기 배양용기를 수저면, 수저구조물 또는 수상구조물에 연결하기 위한 결합수단을 포함하는 미세조류 대량배양을 위한 광생물 반응기.
  7. 제6항에 있어서, 상기 제1막과 상기 제2막은 광투과 특성이 서로 다른, 광생물 반응기.
  8. 제6항에 있어서, 상기 제1막과 상기 제2막은 투과될 수 있는 파장영역이 서로 다른, 광생물 반응기.
  9. 제6항에 있어서, 상기 제1막과 상기 제2막은 물질 투과 특성이 다른, 광생물 반응기.
  10. 제9항에 있어서, 상기 제1막은 산소 또는 이산화탄소에 대한 선택적 투과성을 가지는 반투과막을 포함하고, 상기 제2막은 물 및 영양염류에 대해 선택적 투과성을 가진 반투막을 포함하는, 광생물 반응기.
  11. 제6항에 있어서, 상기 제1막과 상기 제2막은 서로 다른 광반사 특성을 가지며, 상기 제1막을 투과한 광파장을 상기 제2막이 반사하여 상기 반응실로 공급하는, 광생물 반응기.
  12. 제1항 또는 제6항에 있어서, 상기 광필터 영역 또는 열전환 영역은 소정의 형상을 가진 패턴인, 광생물 반응기.
  13. 제12항에 있어서, 상기 패턴은 상기 투입되는 광에너지에 대응하여 그 형상 또는 밀도가 변경되도록 설계된, 광생물 반응기.
  14. 제12항에 있어서, 상기 광차단 영역 또는 열전환 영역은 광투과성막; 및 상기 외벽의 일면에 부착된 광차단 패턴막 또는 열전환 패턴막을 포함하는, 광생물 반응기.
  15. 제14항에 있어서, 상기 광차단 패턴막 또는 열전환 패턴막은 상기 광투과성막에 접착 및 탈착이 가능한 테이프인, 광생물 반응기.
  16. 제1항에 있어서, 상기 광필터 영역은 도색, 코팅 또는 색소 혼합을 통해 제조되는, 광생물 반응기.
  17. 제16항에 있어서, 상기 광필터 영역은 크롬산납(PbCrO4), 황색산화철(FeO(OH) 또는 Fe2O3H2O), 카드뮴옐로(CdS 또는 CdS + ZnS), 티타늄옐로(TiO2NiOSb2O3), 크롬오렌지(PbCrO4PbO), 몰리브데늄오렌지(PbCrO4PbMoO4PbSO4), 적색산화철(Fe2O3), 광명단(Pb3O4), 카드뮴레드(CdS + CdSe), 망간바이올렛(NH4MnP2O7), 감청(Fe(NH4)Fe(CN)6xH2O), 군청(Na6~8Al6Si6O24S2~4), 코발트블루(CoOAl2O3), 크롬그린(크롬산납 + 감청), 에메랄드 그린(Cu(CH3CO2)2Cu(AsO2)2), 치자황색소, 쪽 청색소, 닥 청색소, 홍화 적색소, 오미자 적색소, 오배자 황색소, 쑥 녹색소, 아스타잔틴, 안토시아닌, 피코에리드린, 잔토필, 푸코잔틴, 피코시아닌라스베라톨, 카로티노이드, 벤조퀴논, 시코닌, 알리자닌, 안트라퀴논, 나프토퀴논, 코리신, 플라빈, 이소플라빈 또는 이들 중 둘 이상의 안료의 혼합을 통해 제조되는, 광생물 반응기.
  18. 제1항, 제6항, 제12항 및 제14항 중 어느 한 항에 있어서, 상기 열전환 영역은 광열변환물질을 포함하는, 광생물 반응기.
  19. 제18항에 있어서, 상기 광열변환물질은 적외선, 근적외선, 가시광선 또는 자외선을 흡수하는, 광생물 반응기.
  20. 제18항에 있어서, 상기 광열변환물질은 유기 또는 무기의 안료나 염료, 유기색소, 금속, 금속산화물, 금속탄화물 또는 금속붕화물인, 광생물 반응기.
  21. 제1항에 있어서, 태양광의 범위 내에서 두 영역 이상의 파장대가 투과하도록 상기 광필터 영역이 수평 또는 수직적으로 순차 배열되어 파장의 비율 조절이 가능한, 광생물 반응기.
  22. 제1항에 있어서, 태양광의 범위 내에서 두 영역 이상의 파장대가 투과하도록 상기 광필터 영역이 격자 모양으로 배열되어 파장의 비율 조절이 가능한, 광생물 반응기.
  23. 제1항에 있어서, 상기 수상구조물은 양식장 설비, 부표, 등부표, 수중플랜트, 부유식 소파제, 바지선 또는 메가플로트인, 광생물 반응기.
  24. 제1항에 있어서, 상기 배양용기의 내부 또는 외부에 배치되어 상기 배양용기의 입체적 형상을 유지하는 형상유지 틀을 추가적으로 포함하는, 광생물 반응기.
  25. 제1항에 있어서, 상기 배양용기와 상기 부양수단은 길이조절이 가능한 하나 이상의 로프로 연결되며, 상기 배양용기의 하부에 매달리는 무게추를 추가적으로 포함하여, 상기 무게추 및 상기 로프 길이를 조절함으로써 상기 배양용기가 설치되는 수심을 조절할 수 있는, 광생물 반응기.
  26. 제1항에 있어서, 상기 배양용기의 하부에 연결되는 기체공급관 및 상기 기체공급관을 통해 외부공기를 상기 배양용기에 공급하는 기체공급수단을 추가적으로 포함하여, 기포에 의한 혼합작용으로 상기 배양용기 내에서 미세조류가 고르게 분산될 수 있는, 광생물 반응기.
  27. 제1항에 있어서, 상기 배양용기는 역원추형으로 형성되며, 꼭지점에 상기 기체공급관 및 상기 무게추가 연결되는, 광생물 반응기
  28. 제26항에 있어서, 상기 배양용기는 상부의 수직원통형 부분과 하부의 역원추형 부분을 갖도록 형성되며, 상기 역원추형 부분의 꼭지점에 상기 기체공급관 및 상기 무게추가 연결되는 것을 특징으로 하는 광생물 반응기.
  29. 제25항에 있어서, 상기 배양용기가 적어도 두 개 이상 상하로 배열되도록 연결되며, 상기 무게추는 최하부에 위치하는 배양용기를 포함하는 하나 이상의 상기 배양용기에 하나 이상 매달리는, 광생물 반응기.
  30. 제1항에 있어서, 상기 부양수단이 서로 소정의 간격으로 유지되는 한 쌍 이상의 연결지점을 구비하며, 상기 배양용기는 길이가 길고 폭이 좁은 형상으로 형성되고, 길이방향 양단부가 쌍을 이루는 상기 연결지점에 하나 이상의 로프로 각각 연결되어 상기 배양용기가 파도나 해수의 이동에 의해 자유롭게 뒤집힐 수 있는, 광생물 반응기
  31. 제1항에 있어서, 상기 배양용기는 길쭉한 원통형으로 형성되어 수면과 나란하게 뉘어진 형태로 상기 부양수단, 상기 수저구조물, 상기 수상구조물 또는 수저면에 연결되는, 광생물 반응기.
  32. 제1항에 있어서, 상기 배양용기는 중앙의 원통형 부분과 이 원통형 부분의 양단에 한 쌍의 원추형 부분을 갖도록 형성되며, 각 원추형 부분의 꼭지점에 각각 상기 로프가 연결되는, 광생물 반응기.
  33. 제1항 내지 제32항 중 어느 한 항의 광생물 반응기의 배양용기에 배양배지를 주입하고 미세조류를 접종하는 단계;
    상기 배양용기를 밀봉하고 부양수단에 고정한 후, 해양 또는 담수에 투입하는 단계; 및
    상기 미세조류가 태양광에 의해 광합성을 수행하도록 방치하는 단계를 포함하는 광생물 반응기를 이용한 미세조류 배양방법.
  34. 제1항 또는 제6항에 있어서, 상기 배양용기의 상부의 일부 또는 전부는 발수코팅되는, 광생물 반응기.
  35. 제1항 또는 제6항에 있어서, 상기 수저구조물은 케이블, 가스관 또는 송유관인, 광생물 반응기.
PCT/KR2011/001147 2010-02-22 2011-02-22 미세조류 대량배양을 위한 광생물 반응기 및 이를 이용한 미세조류 배양방법 WO2011102693A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/580,635 US20130052719A1 (en) 2010-02-22 2011-02-22 Photobioreactor for mass culture of microalgae, and method for culturing microalgae by using same
AU2011216650A AU2011216650A1 (en) 2010-02-22 2011-02-22 Photobioreactor for mass culture of microalgae, and method for culturing microalgae by using same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20100015584A KR101188745B1 (ko) 2010-02-22 2010-02-22 특정 파장의 필터기능이 있는 해양 미세조류 대량배양을 위한 광생물 반응기
KR10-2010-0015584 2010-02-22
KR1020100076416A KR101385939B1 (ko) 2010-08-09 2010-08-09 미세조류 대량배양을 위한 광생물 반응기 및 이를 이용한 미세조류 배양방법
KR1020100076433A KR101385940B1 (ko) 2010-08-09 2010-08-09 광차단 패턴 또는 열전환 패턴을 구비한 광생물 반응기 및 이를 이용한 미세조류 배양방법
KR10-2010-0076416 2010-08-09
KR10-2010-0076433 2010-08-09

Publications (2)

Publication Number Publication Date
WO2011102693A2 true WO2011102693A2 (ko) 2011-08-25
WO2011102693A3 WO2011102693A3 (ko) 2012-01-05

Family

ID=44483502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001147 WO2011102693A2 (ko) 2010-02-22 2011-02-22 미세조류 대량배양을 위한 광생물 반응기 및 이를 이용한 미세조류 배양방법

Country Status (3)

Country Link
US (1) US20130052719A1 (ko)
AU (1) AU2011216650A1 (ko)
WO (1) WO2011102693A2 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2990955A1 (fr) * 2012-05-22 2013-11-29 Bernard Gutsche Procede pour l'obtention de biomasse
KR101727632B1 (ko) * 2013-04-05 2017-04-17 인하대학교 산학협력단 광합성 미생물 대량배양을 위한 광생물 반응기
KR101802797B1 (ko) 2016-03-31 2017-11-29 인하대학교 산학협력단 미세조류 수상배양을 위한 광생물반응기
CN112625891A (zh) * 2020-12-29 2021-04-09 深圳大学 一种在宽广水域漂浮的大型光生物反应器
CN112680331A (zh) * 2020-12-29 2021-04-20 深圳大学 一种在大型水体中运行的光生物反应器

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6019213B2 (ja) * 2013-02-27 2016-11-02 株式会社日立製作所 生物培養システム及び生物培養方法
ES1099707Y (es) * 2013-12-20 2014-05-05 Univ Madrid Politecnica Fotobiorreactor de soporte flotante.
KR101654593B1 (ko) * 2014-04-18 2016-09-06 인하대학교 산학협력단 환경수의 추가적인 공급에 의한 광합성 미세조류의 대량 배양방법
CN104531502A (zh) * 2014-11-26 2015-04-22 叶剑 一种利用深层海水养殖能源微藻的装置及其方法
CN107460115B (zh) * 2017-07-24 2021-08-31 大连理工大学 缓释补料光生物反应器及微藻培养方法
CN107418875B (zh) * 2017-08-15 2020-08-14 大连理工大学 微藻培养用摇动平台及微藻培养方法
CN107475069B (zh) * 2017-08-15 2021-09-28 大连理工大学 漂浮式微藻培养系统及微藻培养方法
JP2022047532A (ja) * 2020-09-11 2022-03-24 国立大学法人北海道大学 藻類の培養方法および藻類培養システム
CN112359075A (zh) * 2020-10-15 2021-02-12 云南维他源生物科技有限公司 岩藻黄质规模化生产方法
CN113278493B (zh) * 2021-04-10 2022-07-12 东明格鲁斯生物科技有限公司 一种植物茎叶提取花青素混合发酵装置
CN115316249B (zh) * 2022-09-13 2023-07-14 江西省中国科学院庐山植物园 一种利用鹅卵石基质的提高水生植物生根速率的种植方法
CN115404168B (zh) * 2022-11-01 2023-05-12 山东滨州八匹马塑料化纤制品有限公司 一种海洋微藻养殖方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06327375A (ja) * 1993-05-25 1994-11-29 Onnason Gyogyo Kyodo Kumiai 水産生物の養殖方法及びその装置
KR20020008825A (ko) * 1999-04-13 2002-01-31 추후보정 표면적증가를 통한 높은 광투입량, 파장 이동기 또는광수송을 이용한 광생물반응기
JP2004113003A (ja) * 2002-09-24 2004-04-15 Baba Shoten:Kk 生け簀装置及び生け簀養殖方法
JP2007330215A (ja) * 2006-06-19 2007-12-27 Electric Power Dev Co Ltd 微細藻類培養器具
US20090130706A1 (en) * 2007-04-27 2009-05-21 Greenfuel Technologies Corp. Photobioreactor systems positioned on bodies of water
WO2009094196A2 (en) * 2008-01-23 2009-07-30 Stuart Bussell A submersible aquatic algae cultivation system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5511536A (en) * 1995-03-23 1996-04-30 Cpi Packaging, Inc. Solar-type pool cover
WO2002017707A1 (en) * 2000-08-31 2002-03-07 Council Of Scientific And Industrial Research An improved process for cultivation of algae
US20040109853A1 (en) * 2002-09-09 2004-06-10 Reactive Surfaces, Ltd. Biological active coating components, coatings, and coated surfaces
CN1528879A (zh) * 2003-10-16 2004-09-15 中国科学院生态环境研究中心 太阳能集热器在光合细菌培养中的应用与控制技术
EP2061869A4 (en) * 2006-11-02 2012-10-03 Algenol Biofuels Ltd CLOSED PHOTOBIOREACTOR SYSTEM FOR UNINTERRUPTED DAILY IN-SITU MANUFACTURE, DEPOSITION, COLLECTION AND REMOVAL OF ETHANOL FROM GENETICALLY EXTENDED PHOTOSYNTHETIC ORGANISMS
FR2909703B1 (fr) * 2006-12-12 2009-03-06 Hexcel Reinforcements Soc Par Reseau, destine a la constitution d'un ecran attenuateur de lumiere, assurant une auto-regulation de la lumiere transmise
AU2008261616A1 (en) * 2007-06-14 2008-12-18 Roger Stroud Apparatus and method for the culture of photosynthetic microorganisms
BE1017763A5 (nl) * 2007-09-24 2009-06-02 Proviron Holding Bioreactor.
CN102149809A (zh) * 2008-01-03 2011-08-10 普罗特罗公司 转基因光合微生物和光生物反应器
WO2009152175A1 (en) * 2008-06-09 2009-12-17 Solix Biofuels, Inc. Permeable membranes in film photobioreactors
US8409845B2 (en) * 2008-12-05 2013-04-02 The United States of America as represented by the Administrator of the National Aeronautics & Space Administration (NASA) Algae bioreactor using submerged enclosures with semi-permeable membranes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06327375A (ja) * 1993-05-25 1994-11-29 Onnason Gyogyo Kyodo Kumiai 水産生物の養殖方法及びその装置
KR20020008825A (ko) * 1999-04-13 2002-01-31 추후보정 표면적증가를 통한 높은 광투입량, 파장 이동기 또는광수송을 이용한 광생물반응기
JP2004113003A (ja) * 2002-09-24 2004-04-15 Baba Shoten:Kk 生け簀装置及び生け簀養殖方法
JP2007330215A (ja) * 2006-06-19 2007-12-27 Electric Power Dev Co Ltd 微細藻類培養器具
US20090130706A1 (en) * 2007-04-27 2009-05-21 Greenfuel Technologies Corp. Photobioreactor systems positioned on bodies of water
WO2009094196A2 (en) * 2008-01-23 2009-07-30 Stuart Bussell A submersible aquatic algae cultivation system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2990955A1 (fr) * 2012-05-22 2013-11-29 Bernard Gutsche Procede pour l'obtention de biomasse
KR101727632B1 (ko) * 2013-04-05 2017-04-17 인하대학교 산학협력단 광합성 미생물 대량배양을 위한 광생물 반응기
KR101802797B1 (ko) 2016-03-31 2017-11-29 인하대학교 산학협력단 미세조류 수상배양을 위한 광생물반응기
CN112625891A (zh) * 2020-12-29 2021-04-09 深圳大学 一种在宽广水域漂浮的大型光生物反应器
CN112680331A (zh) * 2020-12-29 2021-04-20 深圳大学 一种在大型水体中运行的光生物反应器

Also Published As

Publication number Publication date
WO2011102693A3 (ko) 2012-01-05
US20130052719A1 (en) 2013-02-28
AU2011216650A1 (en) 2012-09-13

Similar Documents

Publication Publication Date Title
WO2011102693A2 (ko) 미세조류 대량배양을 위한 광생물 반응기 및 이를 이용한 미세조류 배양방법
CN105209593B (zh) 用于光合微生物大量培养的光生物反应器
US9260685B2 (en) System and plant for cultivation of aquatic organisms
US20130045531A1 (en) Immersible Bioreactor Illumination System
CN101050419B (zh) 一种培养微藻的生产装置及其生产方法
US20110281295A1 (en) Method and device for culturing algae
KR20080086988A (ko) 바이오매스 생산을 위한 시스템, 디바이스, 및 방법들
CN102439129A (zh) 海藻生产及收获设备
CN201046966Y (zh) 一种培养微藻的生产装置
JP2013085534A (ja) 微細藻類の培養方法
KR101188745B1 (ko) 특정 파장의 필터기능이 있는 해양 미세조류 대량배양을 위한 광생물 반응기
KR101385939B1 (ko) 미세조류 대량배양을 위한 광생물 반응기 및 이를 이용한 미세조류 배양방법
CN102533522B (zh) 一种全塑密闭模块化气升式光生物反应器
WO2015160068A1 (ko) 환경수의 추가적인 공급에 의한 광합성 미세조류의 대량 배양방법
KR101861972B1 (ko) 부착성 규조류 배양장치 및 이를 이용한 배양방법
CN112625891A (zh) 一种在宽广水域漂浮的大型光生物反应器
WO2013133481A1 (ko) 비닐 시트형 광생물반응기 및 이의 제작방법
KR101382955B1 (ko) 발광다이오드를 이용한 미세조류 배양장치
CN203715619U (zh) 一种用于微藻培养的圆柱形气升式高效光生物反应器
JPH01202229A (ja) 水域生物飼育、培養装置
CN101665765A (zh) 一种封闭式平推流培养微藻的连续生产装置及其生产方法
CN201485465U (zh) 一种封闭式平推流培养微藻的连续生产装置
CN112680331A (zh) 一种在大型水体中运行的光生物反应器
CN111406541A (zh) 外源光对水体中沉水植物生长影响的实验装置及实验方法
KR101385940B1 (ko) 광차단 패턴 또는 열전환 패턴을 구비한 광생물 반응기 및 이를 이용한 미세조류 배양방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744935

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011216650

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2011216650

Country of ref document: AU

Date of ref document: 20110222

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13580635

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11744935

Country of ref document: EP

Kind code of ref document: A2